Wu, Zhuofeng
Divide-or-Conquer? Which Part Should You Distill Your LLM?
Wu, Zhuofeng, Bai, He, Zhang, Aonan, Gu, Jiatao, Vydiswaran, VG Vinod, Jaitly, Navdeep, Zhang, Yizhe
Recent methods have demonstrated that Large Language Models (LLMs) can solve reasoning tasks better when they are encouraged to solve subtasks of the main task first. In this paper we devise a similar strategy that breaks down reasoning tasks into a problem decomposition phase and a problem solving phase and show that the strategy is able to outperform a single stage solution. Further, we hypothesize that the decomposition should be easier to distill into a smaller model compared to the problem solving because the latter requires large amounts of domain knowledge while the former only requires learning general problem solving strategies. We propose methods to distill these two capabilities and evaluate their impact on reasoning outcomes and inference cost. We find that we can distill the problem decomposition phase and at the same time achieve good generalization across tasks, datasets, and models. However, it is harder to distill the problem solving capability without losing performance and the resulting distilled model struggles with generalization. These results indicate that by using smaller, distilled problem decomposition models in combination with problem solving LLMs we can achieve reasoning with cost-efficient inference and local adaptation.
PLANNER: Generating Diversified Paragraph via Latent Language Diffusion Model
Zhang, Yizhe, Gu, Jiatao, Wu, Zhuofeng, Zhai, Shuangfei, Susskind, Josh, Jaitly, Navdeep
Autoregressive models for text sometimes generate repetitive and low-quality output because errors accumulate during the steps of generation. This issue is often attributed to exposure bias - the difference between how a model is trained, and how it is used during inference. Denoising diffusion models provide an alternative approach in which a model can revisit and revise its output. However, they can be computationally expensive and prior efforts on text have led to models that produce less fluent output compared to autoregressive models, especially for longer text and paragraphs. In this paper, we propose PLANNER, a model that combines latent semantic diffusion with autoregressive generation, to generate fluent text while exercising global control over paragraphs. The model achieves this by combining an autoregressive "decoding" module with a "planning" module that uses latent diffusion to generate semantic paragraph embeddings in a coarse-to-fine manner. The proposed method is evaluated on various conditional generation tasks, and results on semantic generation, text completion and summarization show its effectiveness in generating high-quality long-form text in an efficient manner.
HiCL: Hierarchical Contrastive Learning of Unsupervised Sentence Embeddings
Wu, Zhuofeng, Xiao, Chaowei, Vydiswaran, VG Vinod
In this paper, we propose a hierarchical contrastive learning framework, HiCL, which considers local segment-level and global sequence-level relationships to improve training efficiency and effectiveness. Traditional methods typically encode a sequence in its entirety for contrast with others, often neglecting local representation learning, leading to challenges in generalizing to shorter texts. Conversely, HiCL improves its effectiveness by dividing the sequence into several segments and employing both local and global contrastive learning to model segment-level and sequence-level relationships. Further, considering the quadratic time complexity of transformers over input tokens, HiCL boosts training efficiency by first encoding short segments and then aggregating them to obtain the sequence representation. Extensive experiments show that HiCL enhances the prior top-performing SNCSE model across seven extensively evaluated STS tasks, with an average increase of +0.2% observed on BERT-large and +0.44% on RoBERTa-large.
Adversarial Demonstration Attacks on Large Language Models
Wang, Jiongxiao, Liu, Zichen, Park, Keun Hee, Jiang, Zhuojun, Zheng, Zhaoheng, Wu, Zhuofeng, Chen, Muhao, Xiao, Chaowei
With the emergence of more powerful large language models (LLMs), such as ChatGPT and GPT-4, in-context learning (ICL) has gained significant prominence in leveraging these models for specific tasks by utilizing data-label pairs as precondition prompts. While incorporating demonstrations can greatly enhance the performance of LLMs across various tasks, it may introduce a new security concern: attackers can manipulate only the demonstrations without changing the input to perform an attack. In this paper, we investigate the security concern of ICL from an adversarial perspective, focusing on the impact of demonstrations. We propose a novel attack method named advICL, which aims to manipulate only the demonstration without changing the input to mislead the models. Our results demonstrate that as the number of demonstrations increases, the robustness of in-context learning would decrease. Additionally, we also identify the intrinsic property of the demonstrations is that they can be used (prepended) with different inputs. As a result, it introduces a more practical threat model in which an attacker can attack the test input example even without knowing and manipulating it. To achieve it, we propose the transferable version of advICL, named Transferable-advICL. Our experiment shows that the adversarial demonstration generated by Transferable-advICL can successfully attack the unseen test input examples. We hope that our study reveals the critical security risks associated with ICL and underscores the need for extensive research on the robustness of ICL, particularly given its increasing significance in the advancement of LLMs.
Defending against Insertion-based Textual Backdoor Attacks via Attribution
Li, Jiazhao, Wu, Zhuofeng, Ping, Wei, Xiao, Chaowei, Vydiswaran, V. G. Vinod
Textual backdoor attack, as a novel attack model, has been shown to be effective in adding a backdoor to the model during training. Defending against such backdoor attacks has become urgent and important. In this paper, we propose AttDef, an efficient attribution-based pipeline to defend against two insertion-based poisoning attacks, BadNL and InSent. Specifically, we regard the tokens with larger attribution scores as potential triggers since larger attribution words contribute more to the false prediction results and therefore are more likely to be poison triggers. Additionally, we further utilize an external pre-trained language model to distinguish whether input is poisoned or not. We show that our proposed method can generalize sufficiently well in two common attack scenarios (poisoning training data and testing data), which consistently improves previous methods. For instance, AttDef can successfully mitigate both attacks with an average accuracy of 79.97% (56.59% up) and 48.34% (3.99% up) under pre-training and post-training attack defense respectively, achieving the new state-of-the-art performance on prediction recovery over four benchmark datasets.
ChatGPT as an Attack Tool: Stealthy Textual Backdoor Attack via Blackbox Generative Model Trigger
Li, Jiazhao, Yang, Yijin, Wu, Zhuofeng, Vydiswaran, V. G. Vinod, Xiao, Chaowei
Textual backdoor attacks pose a practical threat to existing systems, as they can compromise the model by inserting imperceptible triggers into inputs and manipulating labels in the training dataset. With cutting-edge generative models such as GPT-4 pushing rewriting to extraordinary levels, such attacks are becoming even harder to detect. We conduct a comprehensive investigation of the role of black-box generative models as a backdoor attack tool, highlighting the importance of researching relative defense strategies. In this paper, we reveal that the proposed generative model-based attack, BGMAttack, could effectively deceive textual classifiers. Compared with the traditional attack methods, BGMAttack makes the backdoor trigger less conspicuous by leveraging state-of-the-art generative models. Our extensive evaluation of attack effectiveness across five datasets, complemented by three distinct human cognition assessments, reveals that Figure 4 achieves comparable attack performance while maintaining superior stealthiness relative to baseline methods.