Wu, Yuqi
ProAI: Proactive Multi-Agent Conversational AI with Structured Knowledge Base for Psychiatric Diagnosis
Wu, Yuqi, Wan, Guangya, Li, Jingjing, Zhao, Shengming, Ma, Lingfeng, Ye, Tianyi, Pop, Ion, Zhang, Yanbo, Chen, Jie
Most LLM-driven conversational AI systems operate reactively, responding to user prompts without guiding the interaction. Most LLM-driven conversational AI systems operate reactively, responding to user prompts without guiding the interaction. However, many real-world applications-such as psychiatric diagnosis, consulting, and interviews-require AI to take a proactive role, asking the right questions and steering conversations toward specific objectives. Using mental health differential diagnosis as an application context, we introduce ProAI, a goal-oriented, proactive conversational AI framework. ProAI integrates structured knowledge-guided memory, multi-agent proactive reasoning, and a multi-faceted evaluation strategy, enabling LLMs to engage in clinician-style diagnostic reasoning rather than simple response generation. Through simulated patient interactions, user experience assessment, and professional clinical validation, we demonstrate that ProAI achieves up to 83.3% accuracy in mental disorder differential diagnosis while maintaining professional and empathetic interaction standards. These results highlight the potential for more reliable, adaptive, and goal-driven AI diagnostic assistants, advancing LLMs beyond reactive dialogue systems.
Large Language Models for Causal Discovery: Current Landscape and Future Directions
Wan, Guangya, Lu, Yunsheng, Wu, Yuqi, Hu, Mengxuan, Li, Sheng
Causal discovery (CD) and Large Language Models (LLMs) have emerged as transformative fields in artificial intelligence that have evolved largely independently. While CD specializes in uncovering cause-effect relationships from data, and LLMs excel at natural language processing and generation, their integration presents unique opportunities for advancing causal understanding. This survey examines how LLMs are transforming CD across three key dimensions: direct causal extraction from text, integration of domain knowledge into statistical methods, and refinement of causal structures. We systematically analyze approaches that leverage LLMs for CD tasks, highlighting their innovative use of metadata and natural language for causal inference. Our analysis reveals both LLMs' potential to enhance traditional CD methods and their current limitations as imperfect expert systems. We identify key research gaps, outline evaluation frameworks and benchmarks for LLM-based causal discovery, and advocate future research efforts for leveraging LLMs in causality research. As the first comprehensive examination of the synergy between LLMs and CD, this work lays the groundwork for future advances in the field.
EmbodiedOcc: Embodied 3D Occupancy Prediction for Vision-based Online Scene Understanding
Wu, Yuqi, Zheng, Wenzhao, Zuo, Sicheng, Huang, Yuanhui, Zhou, Jie, Lu, Jiwen
3D occupancy prediction provides a comprehensive description of the surrounding scenes and has become an essential task for 3D perception. Most existing methods focus on offline perception from one or a few views and cannot be applied to embodied agents which demands to gradually perceive the scene through progressive embodied exploration. In this paper, we formulate an embodied 3D occupancy prediction task to target this practical scenario and propose a Gaussian-based EmbodiedOcc framework to accomplish it. We initialize the global scene with uniform 3D semantic Gaussians and progressively update local regions observed by the embodied agent. For each update, we extract semantic and structural features from the observed image and efficiently incorporate them via deformable cross-attention to refine the regional Gaussians. Finally, we employ Gaussian-to-voxel splatting to obtain the global 3D occupancy from the updated 3D Gaussians. Our EmbodiedOcc assumes an unknown (i.e., uniformly distributed) environment and maintains an explicit global memory of it with 3D Gaussians. It gradually gains knowledge through the local refinement of regional Gaussians, which is consistent with how humans understand new scenes through embodied exploration. We reorganize an EmbodiedOcc-ScanNet benchmark based on local annotations to facilitate the evaluation of the embodied 3D occupancy prediction task. Experiments demonstrate that our EmbodiedOcc outperforms existing local prediction methods and accomplishes the embodied occupancy prediction with high accuracy and strong expandability. Code: https://github.com/YkiWu/EmbodiedOcc.
Use of natural language processing to extract and classify papillary thyroid cancer features from surgical pathology reports
Loor-Torres, Ricardo, Wu, Yuqi, Cabezas, Esteban, Borras, Mariana, Toro-Tobon, David, Duran, Mayra, Zahidy, Misk Al, Chavez, Maria Mateo, Jacome, Cristian Soto, Fan, Jungwei W., Ospina, Naykky M. Singh, Wu, Yonghui, Brito, Juan P.
Background We aim to use Natural Language Processing (NLP) to automate the extraction and classification of thyroid cancer risk factors from pathology reports. Methods We analyzed 1,410 surgical pathology reports from adult papillary thyroid cancer patients at Mayo Clinic, Rochester, MN, from 2010 to 2019. Structured and non-structured reports were used to create a consensus-based ground truth dictionary and categorized them into modified recurrence risk levels. Non-structured reports were narrative, while structured reports followed standardized formats. We then developed ThyroPath, a rule-based NLP pipeline, to extract and classify thyroid cancer features into risk categories. Training involved 225 reports (150 structured, 75 unstructured), with testing on 170 reports (120 structured, 50 unstructured) for evaluation. The pipeline's performance was assessed using both strict and lenient criteria for accuracy, precision, recall, and F1-score. Results In extraction tasks, ThyroPath achieved overall strict F-1 scores of 93% for structured reports and 90 for unstructured reports, covering 18 thyroid cancer pathology features. In classification tasks, ThyroPath-extracted information demonstrated an overall accuracy of 93% in categorizing reports based on their corresponding guideline-based risk of recurrence: 76.9% for high-risk, 86.8% for intermediate risk, and 100% for both low and very low-risk cases. However, ThyroPath achieved 100% accuracy across all thyroid cancer risk categories with human-extracted pathology information. Conclusions ThyroPath shows promise in automating the extraction and risk recurrence classification of thyroid pathology reports at large scale. It offers a solution to laborious manual reviews and advancing virtual registries. However, it requires further validation before implementation.