Goto

Collaborating Authors

 Wu, Yizhuo


DPD-NeuralEngine: A 22-nm 6.6-TOPS/W/mm$^2$ Recurrent Neural Network Accelerator for Wideband Power Amplifier Digital Pre-Distortion

arXiv.org Artificial Intelligence

The increasing adoption of Deep Neural Network (DNN)-based Digital Pre-distortion (DPD) in modern communication systems necessitates efficient hardware implementations. This paper presents DPD-NeuralEngine, an ultra-fast, tiny-area, and power-efficient DPD accelerator based on a Gated Recurrent Unit (GRU) neural network (NN). Leveraging a co-designed software and hardware approach, our 22 nm CMOS implementation operates at 2 GHz, capable of processing I/Q signals up to 250 MSps. Experimental results demonstrate a throughput of 256.5 GOPS and power efficiency of 1.32 TOPS/W with DPD linearization performance measured in Adjacent Channel Power Ratio (ACPR) of -45.3 dBc and Error Vector Magnitude (EVM) of -39.8 dB. To our knowledge, this work represents the first AI-based DPD application-specific integrated circuit (ASIC) accelerator, achieving a power-area efficiency (PAE) of 6.6 TOPS/W/mm$^2$.


OpenDPD: An Open-Source End-to-End Learning & Benchmarking Framework for Wideband Power Amplifier Modeling and Digital Pre-Distortion

arXiv.org Artificial Intelligence

With the rise in communication capacity, deep neural networks (DNN) for digital pre-distortion (DPD) to correct non-linearity in wideband power amplifiers (PAs) have become prominent. Yet, there is a void in open-source and measurement-setup-independent platforms for fast DPD exploration and objective DPD model comparison. This paper presents an open-source framework, OpenDPD, crafted in PyTorch, with an associated dataset for PA modeling and DPD learning. We introduce a Dense Gated Recurrent Unit (DGRU)-DPD, trained via a novel end-to-end learning architecture, outperforming previous DPD models on a digital PA (DPA) in the new digital transmitter (DTX) architecture with unconventional transfer characteristics compared to analog PAs. Measurements show our DGRU-DPD achieves an ACPR of -44.69/-44.47 dBc and an EVM of -35.22 dB for 200 MHz OFDM signals. OpenDPD code, datasets, and documentation are publicly available at https://github.com/lab-emi/OpenDPD.