Goto

Collaborating Authors

 Wu, Yihan


Towards Optimal Multi-draft Speculative Decoding

arXiv.org Artificial Intelligence

Large Language Models (LLMs) have become an indispensable part of natural language processing tasks. However, autoregressive sampling has become an efficiency bottleneck. Multi-Draft Speculative Decoding (MDSD) is a recent approach where, when generating each token, a small draft model generates multiple drafts, and the target LLM verifies them in parallel, ensuring that the final output conforms to the target model distribution. The two main design choices in MDSD are the draft sampling method and the verification algorithm. For a fixed draft sampling method, the optimal acceptance rate is a solution to an optimal transport problem, but the complexity of this problem makes it difficult to solve for the optimal acceptance rate and measure the gap between existing verification algorithms and the theoretical upper bound. This paper discusses the dual of the optimal transport problem, providing a way to efficiently compute the optimal acceptance rate. For the first time, we measure the theoretical upper bound of MDSD efficiency for vocabulary sizes in the thousands and quantify the gap between existing verification algorithms and this bound. We also compare different draft sampling methods based on their optimal acceptance rates. Our results show that the draft sampling method strongly influences the optimal acceptance rate, with sampling without replacement outperforming sampling with replacement. Additionally, existing verification algorithms do not reach the theoretical upper bound for both without replacement and with replacement sampling. Our findings suggest that carefully designed draft sampling methods can potentially improve the optimal acceptance rate and enable the development of verification algorithms that closely match the theoretical upper bound.


ESPnet-SpeechLM: An Open Speech Language Model Toolkit

arXiv.org Artificial Intelligence

We present ESPnet-SpeechLM, an open toolkit designed to democratize the development of speech language models (SpeechLMs) and voice-driven agentic applications. The toolkit standardizes speech processing tasks by framing them as universal sequential modeling problems, encompassing a cohesive workflow of data preprocessing, pre-training, inference, and task evaluation. With ESPnet-SpeechLM, users can easily define task templates and configure key settings, enabling seamless and streamlined SpeechLM development. The toolkit ensures flexibility, efficiency, and scalability by offering highly configurable modules for every stage of the workflow. To illustrate its capabilities, we provide multiple use cases demonstrating how competitive SpeechLMs can be constructed with ESPnet-SpeechLM, including a 1.7B-parameter model pre-trained on both text and speech tasks, across diverse benchmarks. The toolkit and its recipes are fully transparent and reproducible at: https://github.com/espnet/espnet/tree/speechlm.


Improved Unbiased Watermark for Large Language Models

arXiv.org Artificial Intelligence

As artificial intelligence surpasses human capabilities in text generation, the necessity to authenticate the origins of AI-generated content has become paramount. Unbiased watermarks offer a powerful solution by embedding statistical signals into language model-generated text without distorting the quality. In this paper, we introduce MCmark, a family of unbiased, Multi-Channel-based watermarks. MCmark works by partitioning the model's vocabulary into segments and promoting token probabilities within a selected segment based on a watermark key. We demonstrate that MCmark not only preserves the original distribution of the language model but also offers significant improvements in detectability and robustness over existing unbiased watermarks. Our experiments with widely-used language models demonstrate an improvement in detectability of over 10% using MCmark, compared to existing state-of-the-art unbiased watermarks. This advancement underscores MCmark's potential in enhancing the practical application of watermarking in AI-generated texts.


Towards Copyright Protection for Knowledge Bases of Retrieval-augmented Language Models via Ownership Verification with Reasoning

arXiv.org Artificial Intelligence

Large language models (LLMs) are increasingly integrated into real-world applications through retrieval-augmented generation (RAG) mechanisms to supplement their responses with up-to-date and domain-specific knowledge. However, the valuable and often proprietary nature of the knowledge bases used in RAG introduces the risk of unauthorized usage by adversaries. Existing methods that can be generalized as watermarking techniques to protect these knowledge bases typically involve poisoning attacks. However, these methods require to alter the results of verification samples (\eg, generating incorrect outputs), inevitably making them susceptible to anomaly detection and even introduce new security risks. To address these challenges, we propose \name{} for `harmless' copyright protection of knowledge bases. Instead of manipulating LLM's final output, \name{} implants distinct verification behaviors in the space of chain-of-thought (CoT) reasoning, maintaining the correctness of the final answer. Our method has three main stages: (1) \textbf{Generating CoTs}: For each verification question, we generate two CoTs, including a target CoT for building watermark behaviors; (2) \textbf{Optimizing Watermark Phrases and Target CoTs}: We optimize them to minimize retrieval errors under the black-box setting of suspicious LLM, ensuring that the watermarked verification queries activate the target CoTs without being activated in non-watermarked ones; (3) \textbf{Ownership Verification}: We exploit a pairwise Wilcoxon test to statistically verify whether a suspicious LLM is augmented with the protected knowledge base by comparing its responses to watermarked and benign verification queries. Our experiments on diverse benchmarks demonstrate that \name{} effectively protects knowledge bases against unauthorized usage while preserving the integrity and performance of the RAG.


Enhancing Audiovisual Speech Recognition through Bifocal Preference Optimization

arXiv.org Artificial Intelligence

Audiovisual Automatic Speech Recognition (AV-ASR) aims to improve speech recognition accuracy by leveraging visual signals. It is particularly challenging in unconstrained real-world scenarios across various domains due to noisy acoustic environments, spontaneous speech, and the uncertain use of visual information. Most previous works fine-tune audio-only ASR models on audiovisual datasets, optimizing them for conventional ASR objectives. However, they often neglect visual features and common errors in unconstrained video scenarios. In this paper, we propose using a preference optimization strategy to improve speech recognition accuracy for real-world videos. First, we create preference data via simulating common errors that occurred in AV-ASR from two focals: manipulating the audio or vision input and rewriting the output transcript. Second, we propose BPO-AVASR, a Bifocal Preference Optimization method to improve AV-ASR models by leveraging both input-side and output-side preference. Extensive experiments demonstrate that our approach significantly improves speech recognition accuracy across various domains, outperforming previous state-of-the-art models on real-world video speech recognition.


De-mark: Watermark Removal in Large Language Models

arXiv.org Artificial Intelligence

Watermarking techniques offer a promising way to identify machine-generated content via embedding covert information into the contents generated from language models (LMs). However, the robustness of the watermarking schemes has not been well explored. In this paper, we present De-mark, an advanced framework designed to remove n-gram-based watermarks effectively. Our method utilizes a novel querying strategy, termed random selection probing, which aids in assessing the strength of the watermark and identifying the red-green list within the n-gram watermark. Experiments on popular LMs, such as Llama3 and ChatGPT, demonstrate the efficiency and effectiveness of De-mark in watermark removal and exploitation tasks.


A Watermark for Order-Agnostic Language Models

arXiv.org Artificial Intelligence

Statistical watermarking techniques are well-established for sequentially decoded language models (LMs). However, these techniques cannot be directly applied to order-agnostic LMs, as the tokens in order-agnostic LMs are not generated sequentially. In this work, we introduce Pattern-mark, a pattern-based watermarking framework specifically designed for order-agnostic LMs. We develop a Markov-chain-based watermark generator that produces watermark key sequences with high-frequency key patterns. Correspondingly, we propose a statistical pattern-based detection algorithm that recovers the key sequence during detection and conducts statistical tests based on the count of high-frequency patterns. Our extensive evaluations on order-agnostic LMs, such as ProteinMPNN and CMLM, demonstrate Pattern-mark's enhanced detection efficiency, generation quality, and robustness, positioning it as a superior watermarking technique for order-agnostic LMs.


SpoofCeleb: Speech Deepfake Detection and SASV In The Wild

arXiv.org Artificial Intelligence

This paper introduces SpoofCeleb, a dataset designed for Speech Deepfake Detection (SDD) and Spoofing-robust Automatic Speaker Verification (SASV), utilizing source data from real-world conditions and spoofing attacks generated by Text-To-Speech (TTS) systems also trained on the same real-world data. Robust recognition systems require speech data recorded in varied acoustic environments with different levels of noise to be trained. However, existing datasets typically include clean, high-quality recordings (bona fide data) due to the requirements for TTS training; studio-quality or well-recorded read speech is typically necessary to train TTS models. Existing SDD datasets also have limited usefulness for training SASV models due to insufficient speaker diversity. We present SpoofCeleb, which leverages a fully automated pipeline that processes the VoxCeleb1 dataset, transforming it into a suitable form for TTS training. We subsequently train 23 contemporary TTS systems. The resulting SpoofCeleb dataset comprises over 2.5 million utterances from 1,251 unique speakers, collected under natural, real-world conditions. The dataset includes carefully partitioned training, validation, and evaluation sets with well-controlled experimental protocols. We provide baseline results for both SDD and SASV tasks. All data, protocols, and baselines are publicly available at https://jungjee.github.io/spoofceleb.


Few-Shot Class Incremental Learning with Attention-Aware Self-Adaptive Prompt

arXiv.org Artificial Intelligence

Few-Shot Class-Incremental Learning (FSCIL) models aim to incrementally learn new classes with scarce samples while preserving knowledge of old ones. Existing FSCIL methods usually fine-tune the entire backbone, leading to overfitting and hindering the potential to learn new classes. On the other hand, recent prompt-based CIL approaches alleviate forgetting by training prompts with sufficient data in each task. In this work, we propose a novel framework named Attention-aware Self-adaptive Prompt (ASP). ASP encourages task-invariant prompts to capture shared knowledge by reducing specific information from the attention aspect. Additionally, self-adaptive task-specific prompts in ASP provide specific information and transfer knowledge from old classes to new classes with an Information Bottleneck learning objective. In summary, ASP prevents overfitting on base task and does not require enormous data in few-shot incremental tasks. Extensive experiments on three benchmark datasets validate that ASP consistently outperforms state-of-the-art FSCIL and prompt-based CIL methods in terms of both learning new classes and mitigating forgetting.


Entity Alignment with Unlabeled Dangling Cases

arXiv.org Artificial Intelligence

We investigate the entity alignment problem with unlabeled dangling cases, meaning that there are entities in the source or target graph having no counterparts in the other, and those entities remain unlabeled. The problem arises when the source and target graphs are of different scales, and it is much cheaper to label the matchable pairs than the dangling entities. To solve the issue, we propose a novel GNN-based dangling detection and entity alignment framework. While the two tasks share the same GNN and are trained together, the detected dangling entities are removed in the alignment. Our framework is featured by a designed entity and relation attention mechanism for selective neighborhood aggregation in representation learning, as well as a positive-unlabeled learning loss for an unbiased estimation of dangling entities. Experimental results have shown that each component of our design contributes to the overall alignment performance which is comparable or superior to baselines, even if the baselines additionally have 30\% of the dangling entities labeled as training data.