Goto

Collaborating Authors

 Wu, Xinyi


Oversmoothing as Loss of Sign: Towards Structural Balance in Graph Neural Networks

arXiv.org Artificial Intelligence

Oversmoothing is a common issue in graph neural networks (GNNs), where node representations become excessively homogeneous as the number of layers increases, resulting in degraded performance. Various strategies have been proposed to combat oversmoothing in practice, yet they are based on different heuristics and lack a unified understanding of their inherent mechanisms. In this paper, we show that three major classes of anti-oversmoothing techniques can be mathematically interpreted as message-passing over signed graphs comprising both positive and negative edges. By analyzing the asymptotic behavior of signed graph propagation, we demonstrate that negative edges can repel nodes to a certain extent, providing deeper insights into how these methods mitigate oversmoothing. Furthermore, our results suggest that the structural balance of a signed graph--where positive edges exist only within clusters and negative edges appear only between clusters--is crucial for clustering node representations in the long term through signed graph propagation. Motivated by these observations, we propose a solution to mitigate oversmoothing with theoretical guarantees--Structural Balance Propagation (SBP), by incorporating label and feature information to create a structurally balanced graph for message-passing. Experiments on nine datasets against twelve baselines demonstrate the effectiveness of our method, highlighting the value of our signed graph perspective.


Uni-Retrieval: A Multi-Style Retrieval Framework for STEM's Education

arXiv.org Artificial Intelligence

In AI-facilitated teaching, leveraging various query styles to interpret abstract text descriptions is crucial for ensuring high-quality teaching. However, current retrieval models primarily focus on natural text-image retrieval, making them insufficiently tailored to educational scenarios due to the ambiguities in the retrieval process. In this paper, we propose a diverse expression retrieval task tailored to educational scenarios, supporting retrieval based on multiple query styles and expressions. We introduce the STEM Education Retrieval Dataset (SER), which contains over 24,000 query pairs of different styles, and the Uni-Retrieval, an efficient and style-diversified retrieval vision-language model based on prompt tuning. Uni-Retrieval extracts query style features as prototypes and builds a continuously updated Prompt Bank containing prompt tokens for diverse queries. This bank can updated during test time to represent domain-specific knowledge for different subject retrieval scenarios. Our framework demonstrates scalability and robustness by dynamically retrieving prompt tokens based on prototype similarity, effectively facilitating learning for unknown queries. Experimental results indicate that Uni-Retrieval outperforms existing retrieval models in most retrieval tasks. This advancement provides a scalable and precise solution for diverse educational needs.


On the Emergence of Position Bias in Transformers

arXiv.org Artificial Intelligence

Recent studies have revealed various manifestations of position bias in transformer architectures, from the "lost-in-the-middle" phenomenon to attention sinks, yet a comprehensive theoretical understanding of how attention masks and positional encodings shape these biases remains elusive. This paper introduces a novel graph-theoretic framework to analyze position bias in multi-layer attention. Modeling attention masks as directed graphs, we quantify how tokens interact with contextual information based on their sequential positions. We uncover two key insights: First, causal masking inherently biases attention toward earlier positions, as tokens in deeper layers attend to increasingly more contextualized representations of earlier tokens. Second, we characterize the competing effects of the causal mask and relative positional encodings, such as the decay mask and rotary positional encoding (RoPE): while both mechanisms introduce distance-based decay within individual attention maps, their aggregate effect across multiple attention layers -- coupled with the causal mask -- leads to a trade-off between the long-term decay effects and the cumulative importance of early sequence positions. Through controlled numerical experiments, we not only validate our theoretical findings but also reproduce position biases observed in real-world LLMs. Our framework offers a principled foundation for understanding positional biases in transformers, shedding light on the complex interplay of attention mechanism components and guiding more informed architectural design.


Investigating Acoustic-Textual Emotional Inconsistency Information for Automatic Depression Detection

arXiv.org Artificial Intelligence

Previous studies have demonstrated that emotional features from a single acoustic sentiment label can enhance depression diagnosis accuracy. Additionally, according to the Emotion Context-Insensitivity theory and our pilot study, individuals with depression might convey negative emotional content in an unexpectedly calm manner, showing a high degree of inconsistency in emotional expressions during natural conversations. So far, few studies have recognized and leveraged the emotional expression inconsistency for depression detection. In this paper, a multimodal cross-attention method is presented to capture the Acoustic-Textual Emotional Inconsistency (ATEI) information. This is achieved by analyzing the intricate local and long-term dependencies of emotional expressions across acoustic and textual domains, as well as the mismatch between the emotional content within both domains. A Transformer-based model is then proposed to integrate this ATEI information with various fusion strategies for detecting depression. Furthermore, a scaling technique is employed to adjust the ATEI feature degree during the fusion process, thereby enhancing the model's ability to discern patients with depression across varying levels of severity. To best of our knowledge, this work is the first to incorporate emotional expression inconsistency information into depression detection. Experimental results on a counseling conversational dataset illustrate the effectiveness of our method.


Understanding and Scaling Collaborative Filtering Optimization from the Perspective of Matrix Rank

arXiv.org Artificial Intelligence

Collaborative Filtering (CF) methods dominate real-world recommender systems given their ability to learn high-quality, sparse ID-embedding tables that effectively capture user preferences. These tables scale linearly with the number of users and items, and are trained to ensure high similarity between embeddings of interacted user-item pairs, while maintaining low similarity for non-interacted pairs. Despite their high performance, encouraging dispersion for non-interacted pairs necessitates expensive regularization (e.g., negative sampling), hurting runtime and scalability. Existing research tends to address these challenges by simplifying the learning process, either by reducing model complexity or sampling data, trading performance for runtime. In this work, we move beyond model-level modifications and study the properties of the embedding tables under different learning strategies. Through theoretical analysis, we find that the singular values of the embedding tables are intrinsically linked to different CF loss functions. These findings are empirically validated on real-world datasets, demonstrating the practical benefits of higher stable rank, a continuous version of matrix rank which encodes the distribution of singular values. Based on these insights, we propose an efficient warm-start strategy that regularizes the stable rank of the user and item embeddings. We show that stable rank regularization during early training phases can promote higher-quality embeddings, resulting in training speed improvements of up to 66%. Additionally, stable rank regularization can act as a proxy for negative sampling, allowing for performance gains of up to 21% over loss functions with small negative sampling ratios. Overall, our analysis unifies current CF methods under a new perspective, their optimization of stable rank, motivating a flexible regularization method.


Gemini 1.5: Unlocking multimodal understanding across millions of tokens of context

arXiv.org Artificial Intelligence

In this report, we introduce the Gemini 1.5 family of models, representing the next generation of highly compute-efficient multimodal models capable of recalling and reasoning over fine-grained information from millions of tokens of context, including multiple long documents and hours of video and audio. The family includes two new models: (1) an updated Gemini 1.5 Pro, which exceeds the February version on the great majority of capabilities and benchmarks; (2) Gemini 1.5 Flash, a more lightweight variant designed for efficiency with minimal regression in quality. Gemini 1.5 models achieve near-perfect recall on long-context retrieval tasks across modalities, improve the state-of-the-art in long-document QA, long-video QA and long-context ASR, and match or surpass Gemini 1.0 Ultra's state-of-the-art performance across a broad set of benchmarks. Studying the limits of Gemini 1.5's long-context ability, we find continued improvement in next-token prediction and near-perfect retrieval (>99%) up to at least 10M tokens, a generational leap over existing models such as Claude 3.0 (200k) and GPT-4 Turbo (128k). Finally, we highlight real-world use cases, such as Gemini 1.5 collaborating with professionals on completing their tasks achieving 26 to 75% time savings across 10 different job categories, as well as surprising new capabilities of large language models at the frontier; when given a grammar manual for Kalamang, a language with fewer than 200 speakers worldwide, the model learns to translate English to Kalamang at a similar level to a person who learned from the same content.


Residual Connections and Normalization Can Provably Prevent Oversmoothing in GNNs

arXiv.org Artificial Intelligence

Residual connections and normalization layers have become standard design choices for graph neural networks (GNNs), and were proposed as solutions to the mitigate the oversmoothing problem in GNNs. However, how exactly these methods help alleviate the oversmoothing problem from a theoretical perspective is not well understood. In this work, we provide a formal and precise characterization of (linearized) GNNs with residual connections and normalization layers. We establish that (a) for residual connections, the incorporation of the initial features at each layer can prevent the signal from becoming too smooth, and determines the subspace of possible node representations; (b) batch normalization prevents a complete collapse of the output embedding space to a one-dimensional subspace through the individual rescaling of each column of the feature matrix. This results in the convergence of node representations to the top-$k$ eigenspace of the message-passing operator; (c) moreover, we show that the centering step of a normalization layer -- which can be understood as a projection -- alters the graph signal in message-passing in such a way that relevant information can become harder to extract. We therefore introduce a novel, principled normalization layer called GraphNormv2 in which the centering step is learned such that it does not distort the original graph signal in an undesirable way. Experimental results confirm the effectiveness of our method.


On the Role of Attention Masks and LayerNorm in Transformers

arXiv.org Machine Learning

Self-attention is the key mechanism of transformers, which are the essential building blocks of modern foundation models. Recent studies have shown that pure self-attention suffers from an increasing degree of rank collapse as depth increases, limiting model expressivity and further utilization of model depth. The existing literature on rank collapse, however, has mostly overlooked other critical components in transformers that may alleviate the rank collapse issue. In this paper, we provide a general analysis of rank collapse under self-attention, taking into account the effects of attention masks and layer normalization (LayerNorm). In particular, we find that although pure masked attention still suffers from exponential collapse to a rank one subspace, local masked attention can provably slow down the collapse rate. In the case of self-attention with LayerNorm, we first show that for certain classes of value matrices, collapse to a rank one subspace still happens exponentially. However, through construction of nontrivial counterexamples, we then establish that with proper choice of value matrices, a general class of sequences may not converge to a rank one subspace, and the self-attention dynamics with LayerNorm can simultaneously possess a rich set of equilibria with any possible rank between one and full. Our result refutes the previous hypothesis that LayerNorm plays no role in the rank collapse of self-attention and suggests that self-attention with LayerNorm constitutes a much more expressive, versatile nonlinear dynamical system than what was originally thought.


Towards Efficient Disaster Response via Cost-effective Unbiased Class Rate Estimation through Neyman Allocation Stratified Sampling Active Learning

arXiv.org Artificial Intelligence

With the rapid development of earth observation technology, we have entered an era of massively available satellite remote-sensing data. However, a large amount of satellite remote sensing data lacks a label or the label cost is too high to hinder the potential of AI technology mining satellite data. Especially in such an emergency response scenario that uses satellite data to evaluate the degree of disaster damage. Disaster damage assessment encountered bottlenecks due to excessive focus on the damage of a certain building in a specific geographical space or a certain area on a larger scale. In fact, in the early days of disaster emergency response, government departments were more concerned about the overall damage rate of the disaster area instead of single-building damage, because this helps the government decide the level of emergency response. We present an innovative algorithm that constructs Neyman stratified random sampling trees for binary classification and extends this approach to multiclass problems. Through extensive experimentation on various datasets and model structures, our findings demonstrate that our method surpasses both passive and conventional active learning techniques in terms of class rate estimation and model enhancement with only 30\%-60\% of the annotation cost of simple sampling. It effectively addresses the 'sampling bias' challenge in traditional active learning strategies and mitigates the 'cold start' dilemma. The efficacy of our approach is further substantiated through application to disaster evaluation tasks using Xview2 Satellite imagery, showcasing its practical utility in real-world contexts.


What Are We Optimizing For? A Human-centric Evaluation Of Deep Learning-based Recommender Systems

arXiv.org Artificial Intelligence

Deep learning-based (DL) models in recommender systems (RecSys) have gained significant recognition for their remarkable accuracy in predicting user preferences. However, their performance often lacks a comprehensive evaluation from a human-centric perspective, which encompasses various dimensions beyond simple interest matching. In this work, we have developed a robust human-centric evaluation framework that incorporates seven diverse metrics to assess the quality of recommendations generated by five recent open-sourced DL models. Our evaluation datasets consist of both offline benchmark data and personalized online recommendation feedback collected from 445 real users. We find that (1) different DL models have different pros and cons in the multi-dimensional metrics that we test with; (2) users generally want a combination of accuracy with at least one another human values in the recommendation; (3) the degree of combination of different values needs to be carefully experimented to user preferred level.