Wu, Xinxin
Generalizing soft actor-critic algorithms to discrete action spaces
Zhang, Le, Gu, Yong, Zhao, Xin, Zhang, Yanshuo, Zhao, Shu, Jin, Yifei, Wu, Xinxin
ATARI is a suite of video games used by reinforcement learning (RL) researchers to test the effectiveness of the learning algorithm. Receiving only the raw pixels and the game score, the agent learns to develop sophisticated strategies, even to the comparable level of a professional human games tester. Ideally, we also want an agent requiring very few interactions with the environment. Previous competitive model-free algorithms for the task use the valued-based Rainbow algorithm without any policy head. In this paper, we change it by proposing a practical discrete variant of the soft actor-critic (SAC) algorithm. The new variant enables off-policy learning using policy heads for discrete domains. By incorporating it into the advanced Rainbow variant, i.e., the ``bigger, better, faster'' (BBF), the resulting SAC-BBF improves the previous state-of-the-art interquartile mean (IQM) from 1.045 to 1.088, and it achieves these results using only replay ratio (RR) 2. By using lower RR 2, the training time of SAC-BBF is strictly one-third of the time required for BBF to achieve an IQM of 1.045 using RR 8. As a value of IQM greater than one indicates super-human performance, SAC-BBF is also the only model-free algorithm with a super-human level using only RR 2. The code is publicly available on GitHub at https://github.com/lezhang-thu/bigger-better-faster-SAC.
Hyperspectral Image Denoising Using Non-convex Local Low-rank and Sparse Separation with Spatial-Spectral Total Variation Regularization
Peng, Chong, Liu, Yang, Chen, Yongyong, Wu, Xinxin, Cheng, Andrew, Kang, Zhao, Chen, Chenglizhao, Cheng, Qiang
In this paper, we propose a novel nonconvex approach to robust principal component analysis for HSI denoising, which focuses on simultaneously developing more accurate approximations to both rank and column-wise sparsity for the low-rank and sparse components, respectively. In particular, the new method adopts the log-determinant rank approximation and a novel $\ell_{2,\log}$ norm, to restrict the local low-rank or column-wisely sparse properties for the component matrices, respectively. For the $\ell_{2,\log}$-regularized shrinkage problem, we develop an efficient, closed-form solution, which is named $\ell_{2,\log}$-shrinkage operator. The new regularization and the corresponding operator can be generally used in other problems that require column-wise sparsity. Moreover, we impose the spatial-spectral total variation regularization in the log-based nonconvex RPCA model, which enhances the global piece-wise smoothness and spectral consistency from the spatial and spectral views in the recovered HSI. Extensive experiments on both simulated and real HSIs demonstrate the effectiveness of the proposed method in denoising HSIs.