Goto

Collaborating Authors

 Wu, Xinxiao


How Vision-Language Tasks Benefit from Large Pre-trained Models: A Survey

arXiv.org Artificial Intelligence

The exploration of various vision-language tasks, such as visual captioning, visual question answering, and visual commonsense reasoning, is an important area in artificial intelligence and continuously attracts the research community's attention. Despite the improvements in overall performance, classic challenges still exist in vision-language tasks and hinder the development of this area. In recent years, the rise of pre-trained models is driving the research on vision-language tasks. Thanks to the massive scale of training data and model parameters, pre-trained models have exhibited excellent performance in numerous downstream tasks. Inspired by the powerful capabilities of pre-trained models, new paradigms have emerged to solve the classic challenges. Such methods have become mainstream in current research with increasing attention and rapid advances. In this paper, we present a comprehensive overview of how vision-language tasks benefit from pre-trained models. First, we review several main challenges in vision-language tasks and discuss the limitations of previous solutions before the era of pre-training. Next, we summarize the recent advances in incorporating pre-trained models to address the challenges in vision-language tasks. Finally, we analyze the potential risks associated with the inherent limitations of pre-trained models and discuss possible solutions, attempting to provide future research directions.


Meta-causal Learning for Single Domain Generalization

arXiv.org Artificial Intelligence

Single domain generalization aims to learn a model from a single training domain (source domain) and apply it to multiple unseen test domains (target domains). Existing methods focus on expanding the distribution of the training domain to cover the target domains, but without estimating the domain shift between the source and target domains. In this paper, we propose a new learning paradigm, namely simulate-analyze-reduce, which first simulates the domain shift by building an auxiliary domain as the target domain, then learns to analyze the causes of domain shift, and finally learns to reduce the domain shift for model adaptation. Under this paradigm, we propose a meta-causal learning method to learn meta-knowledge, that is, how to infer the causes of domain shift between the auxiliary and source domains during training. We use the meta-knowledge to analyze the shift between the target and source domains during testing. Specifically, we perform multiple transformations on source data to generate the auxiliary domain, perform counterfactual inference to learn to discover the causal factors of the shift between the auxiliary and source domains, and incorporate the inferred causality into factor-aware domain alignments. Extensive experiments on several benchmarks of image classification show the effectiveness of our method.


Domain Adversarial Reinforcement Learning for Partial Domain Adaptation

arXiv.org Machine Learning

Partial domain adaptation aims to transfer knowledge from a label-rich source domain to a label-scarce target domain which relaxes the fully shared label space assumption across different domains. In this more general and practical scenario, a major challenge is how to select source instances in the shared classes across different domains for positive transfer. To address this issue, we propose a Domain Adversarial Reinforcement Learning (DARL) framework to automatically select source instances in the shared classes for circumventing negative transfer as well as to simultaneously learn transferable features between domains by reducing the domain shift. Specifically, in this framework, we employ deep Q-learning to learn policies for an agent to make selection decisions by approximating the action-value function. Moreover, domain adversarial learning is introduced to learn domain-invariant features for the selected source instances by the agent and the target instances, and also to determine rewards for the agent based on how relevant the selected source instances are to the target domain. Experiments on several benchmark datasets demonstrate that the superior performance of our DARL method over existing state of the arts for partial domain adaptation.


Unsupervised Deep Learning of Mid-Level Video Representation for Action Recognition

AAAI Conferences

Current deep learning methods for action recognition rely heavily on large scale labeled video datasets. Manually annotating video datasets is laborious and may introduce unexpected bias to train complex deep models for learning video representation. In this paper, we propose an unsupervised deep learning method which employs unlabeled local spatial-temporal volumes extracted from action videos to learn midlevel video representation for action recognition. Specifically, our method simultaneously discovers mid-level semantic concepts by discriminative clustering and optimizes local spatial-temporal features by two relatively small and simple deep neural networks. The clustering generates semantic visual concepts that guide the training of the deep networks, and the networks in turn guarantee the robustness of the semantic concepts. Experiments on the HMDB51 and the UCF101 datasets demonstrate the superiority of the proposed method, even over several supervised learning methods.