Wu, Xindi
ICONS: Influence Consensus for Vision-Language Data Selection
Wu, Xindi, Xia, Mengzhou, Shao, Rulin, Deng, Zhiwei, Koh, Pang Wei, Russakovsky, Olga
Visual Instruction Tuning typically requires a large amount of vision-language training data. This data often containing redundant information that increases computational costs without proportional performance gains. In this work, we introduce ICONS, a gradient-driven Influence CONsensus approach for vision-language data Selection that selects a compact training dataset for efficient multi-task training. The key element of our approach is cross-task influence consensus, which uses majority voting across task-specific influence matrices to identify samples that are consistently valuable across multiple tasks, allowing us to effectively prioritize data that optimizes for overall performance. Experiments show that models trained on our selected data (20% of LLaVA-665K) achieve 98.6% of the relative performance obtained using the full dataset. Additionally, we release this subset, LLaVA-ICONS-133K, a compact yet highly informative subset of LLaVA-665K visual instruction tuning data, preserving high impact training data for efficient vision-language model development.
SWE-bench Multimodal: Do AI Systems Generalize to Visual Software Domains?
Yang, John, Jimenez, Carlos E., Zhang, Alex L., Lieret, Kilian, Yang, Joyce, Wu, Xindi, Press, Ori, Muennighoff, Niklas, Synnaeve, Gabriel, Narasimhan, Karthik R., Yang, Diyi, Wang, Sida I., Press, Ofir
Autonomous systems for software engineering are now capable of fixing bugs and developing features. These systems are commonly evaluated on SWE-bench (Jimenez et al., 2024a), which assesses their ability to solve software issues from GitHub repositories. However, SWE-bench uses only Python repositories, with problem statements presented predominantly as text and lacking visual elements such as images. This limited coverage motivates our inquiry into how existing systems might perform on unrepresented software engineering domains (e.g., front-end, game development, DevOps), which use different programming languages and paradigms. Therefore, we propose SWE-bench Multimodal (SWE-bench M), to evaluate systems on their ability to fix bugs in visual, user-facing JavaScript software. SWE-bench M features 617 task instances collected from 17 JavaScript libraries used for web interface design, diagramming, data visualization, syntax highlighting, and interactive mapping. Each SWE-bench M task instance contains at least one image in its problem statement or unit tests. Our analysis finds that top-performing SWE-bench systems struggle with SWE-bench M, revealing limitations in visual problem-solving and cross-language generalization. Lastly, we show that SWE-agent's flexible language-agnostic features enable it to substantially outperform alternatives on SWE-bench M, resolving 12% of task instances compared to 6% for the next best system.
Language Models as Science Tutors
Chevalier, Alexis, Geng, Jiayi, Wettig, Alexander, Chen, Howard, Mizera, Sebastian, Annala, Toni, Aragon, Max Jameson, Fanlo, Arturo Rodrรญguez, Frieder, Simon, Machado, Simon, Prabhakar, Akshara, Thieu, Ellie, Wang, Jiachen T., Wang, Zirui, Wu, Xindi, Xia, Mengzhou, Jia, Wenhan, Yu, Jiatong, Zhu, Jun-Jie, Ren, Zhiyong Jason, Arora, Sanjeev, Chen, Danqi
NLP has recently made exciting progress toward training language models (LMs) with strong scientific problem-solving skills. However, model development has not focused on real-life use-cases of LMs for science, including applications in education that require processing long scientific documents. To address this, we introduce TutorEval and TutorChat. TutorEval is a diverse question-answering benchmark consisting of questions about long chapters from STEM textbooks, written by experts. TutorEval helps measure real-life usability of LMs as scientific assistants, and it is the first benchmark combining long contexts, free-form generation, and multi-disciplinary scientific knowledge. Moreover, we show that fine-tuning base models with existing dialogue datasets leads to poor performance on TutorEval. Therefore, we create TutorChat, a dataset of 80,000 long synthetic dialogues about textbooks. We use TutorChat to fine-tune Llemma models with 7B and 34B parameters. These LM tutors specialized in math have a 32K-token context window, and they excel at TutorEval while performing strongly on GSM8K and MATH. Our datasets build on open-source materials, and we release our models, data, and evaluations.
Pix2Map: Cross-modal Retrieval for Inferring Street Maps from Images
Wu, Xindi, Lau, KwunFung, Ferroni, Francesco, Oลกep, Aljoลกa, Ramanan, Deva
Self-driving vehicles rely on urban street maps for autonomous navigation. In this paper, we introduce Pix2Map, a method for inferring urban street map topology directly from ego-view images, as needed to continually update and expand existing maps. This is a challenging task, as we need to infer a complex urban road topology directly from raw image data. The main insight of this paper is that this problem can be posed as cross-modal retrieval by learning a joint, cross-modal embedding space for images and existing maps, represented as discrete graphs that encode the topological layout of the visual surroundings. We conduct our experimental evaluation using the Argoverse dataset and show that it is indeed possible to accurately retrieve street maps corresponding to both seen and unseen roads solely from image data. Moreover, we show that our retrieved maps can be used to update or expand existing maps and even show proof-of-concept results for visual localization and image retrieval from spatial graphs.
Ego4D: Around the World in 3,000 Hours of Egocentric Video
Grauman, Kristen, Westbury, Andrew, Byrne, Eugene, Chavis, Zachary, Furnari, Antonino, Girdhar, Rohit, Hamburger, Jackson, Jiang, Hao, Liu, Miao, Liu, Xingyu, Martin, Miguel, Nagarajan, Tushar, Radosavovic, Ilija, Ramakrishnan, Santhosh Kumar, Ryan, Fiona, Sharma, Jayant, Wray, Michael, Xu, Mengmeng, Xu, Eric Zhongcong, Zhao, Chen, Bansal, Siddhant, Batra, Dhruv, Cartillier, Vincent, Crane, Sean, Do, Tien, Doulaty, Morrie, Erapalli, Akshay, Feichtenhofer, Christoph, Fragomeni, Adriano, Fu, Qichen, Fuegen, Christian, Gebreselasie, Abrham, Gonzalez, Cristina, Hillis, James, Huang, Xuhua, Huang, Yifei, Jia, Wenqi, Khoo, Weslie, Kolar, Jachym, Kottur, Satwik, Kumar, Anurag, Landini, Federico, Li, Chao, Li, Yanghao, Li, Zhenqiang, Mangalam, Karttikeya, Modhugu, Raghava, Munro, Jonathan, Murrell, Tullie, Nishiyasu, Takumi, Price, Will, Puentes, Paola Ruiz, Ramazanova, Merey, Sari, Leda, Somasundaram, Kiran, Southerland, Audrey, Sugano, Yusuke, Tao, Ruijie, Vo, Minh, Wang, Yuchen, Wu, Xindi, Yagi, Takuma, Zhu, Yunyi, Arbelaez, Pablo, Crandall, David, Damen, Dima, Farinella, Giovanni Maria, Ghanem, Bernard, Ithapu, Vamsi Krishna, Jawahar, C. V., Joo, Hanbyul, Kitani, Kris, Li, Haizhou, Newcombe, Richard, Oliva, Aude, Park, Hyun Soo, Rehg, James M., Sato, Yoichi, Shi, Jianbo, Shou, Mike Zheng, Torralba, Antonio, Torresani, Lorenzo, Yan, Mingfei, Malik, Jitendra
We introduce Ego4D, a massive-scale egocentric video dataset and benchmark suite. It offers 3,025 hours of daily-life activity video spanning hundreds of scenarios (household, outdoor, workplace, leisure, etc.) captured by 855 unique camera wearers from 74 worldwide locations and 9 different countries. The approach to collection is designed to uphold rigorous privacy and ethics standards with consenting participants and robust de-identification procedures where relevant. Ego4D dramatically expands the volume of diverse egocentric video footage publicly available to the research community. Portions of the video are accompanied by audio, 3D meshes of the environment, eye gaze, stereo, and/or synchronized videos from multiple egocentric cameras at the same event. Furthermore, we present a host of new benchmark challenges centered around understanding the first-person visual experience in the past (querying an episodic memory), present (analyzing hand-object manipulation, audio-visual conversation, and social interactions), and future (forecasting activities). By publicly sharing this massive annotated dataset and benchmark suite, we aim to push the frontier of first-person perception. Project page: https://ego4d-data.org/