Goto

Collaborating Authors

 Wu, Xiaomin


What a Whole Slide Image Can Tell? Subtype-guided Masked Transformer for Pathological Image Captioning

arXiv.org Artificial Intelligence

Pathological captioning of Whole Slide Images (WSIs), though is essential in computer-aided pathological diagnosis, has rarely been studied due to the limitations in datasets and model training efficacy. In this paper, we propose a new paradigm Subtype-guided Masked Transformer (SGMT) for pathological captioning based on Transformers, which treats a WSI as a sequence of sparse patches and generates an overall caption sentence from the sequence. An accompanying subtype prediction is introduced into SGMT to guide the training process and enhance the captioning accuracy. We also present an Asymmetric Masked Mechansim approach to tackle the large size constraint of pathological image captioning, where the numbers of sequencing patches in SGMT are sampled differently in the training and inferring phases, respectively. Experiments on the PatchGastricADC22 dataset demonstrate that our approach effectively adapts to the task with a transformer-based model and achieves superior performance than traditional RNN-based methods. Our codes are to be made available for further research and development.


HTEC: Human Transcription Error Correction

arXiv.org Artificial Intelligence

High-quality human transcription is essential for training and improving Automatic Speech Recognition (ASR) models. Recent study~\cite{libricrowd} has found that every 1% worse transcription Word Error Rate (WER) increases approximately 2% ASR WER by using the transcriptions to train ASR models. Transcription errors are inevitable for even highly-trained annotators. However, few studies have explored human transcription correction. Error correction methods for other problems, such as ASR error correction and grammatical error correction, do not perform sufficiently for this problem. Therefore, we propose HTEC for Human Transcription Error Correction. HTEC consists of two stages: Trans-Checker, an error detection model that predicts and masks erroneous words, and Trans-Filler, a sequence-to-sequence generative model that fills masked positions. We propose a holistic list of correction operations, including four novel operations handling deletion errors. We further propose a variant of embeddings that incorporates phoneme information into the input of the transformer. HTEC outperforms other methods by a large margin and surpasses human annotators by 2.2% to 4.5% in WER. Finally, we deployed HTEC to assist human annotators and showed HTEC is particularly effective as a co-pilot, which improves transcription quality by 15.1% without sacrificing transcription velocity.