Not enough data to create a plot.
Try a different view from the menu above.
Wu, Xiaobao
On the Affinity, Rationality, and Diversity of Hierarchical Topic Modeling
Wu, Xiaobao, Pan, Fengjun, Nguyen, Thong, Feng, Yichao, Liu, Chaoqun, Nguyen, Cong-Duy, Luu, Anh Tuan
Hierarchical topic modeling aims to discover latent topics from a corpus and organize them into a hierarchy to understand documents with desirable semantic granularity. However, existing work struggles with producing topic hierarchies of low affinity, rationality, and diversity, which hampers document understanding. To overcome these challenges, we in this paper propose Transport Plan and Context-aware Hierarchical Topic Model (TraCo). Instead of early simple topic dependencies, we propose a transport plan dependency method. It constrains dependencies to ensure their sparsity and balance, and also regularizes topic hierarchy building with them. This improves affinity and diversity of hierarchies. We further propose a context-aware disentangled decoder. Rather than previously entangled decoding, it distributes different semantic granularity to topics at different levels by disentangled decoding. This facilitates the rationality of hierarchies. Experiments on benchmark datasets demonstrate that our method surpasses state-of-the-art baselines, effectively improving the affinity, rationality, and diversity of hierarchical topic modeling with better performance on downstream tasks.
A Survey on Neural Topic Models: Methods, Applications, and Challenges
Wu, Xiaobao, Nguyen, Thong, Luu, Anh Tuan
Topic models have been prevalent for decades to discover latent topics and infer topic proportions of documents in an unsupervised fashion. They have been widely used in various applications like text analysis and context recommendation. Recently, the rise of neural networks has facilitated the emergence of a new research field -- Neural Topic Models (NTMs). Different from conventional topic models, NTMs directly optimize parameters without requiring model-specific derivations. This endows NTMs with better scalability and flexibility, resulting in significant research attention and plentiful new methods and applications. In this paper, we present a comprehensive survey on neural topic models concerning methods, applications, and challenges. Specifically, we systematically organize current NTM methods according to their network structures and introduce the NTMs for various scenarios like short texts and cross-lingual documents. We also discuss a wide range of popular applications built on NTMs. Finally, we highlight the challenges confronted by NTMs to inspire future research.
READ-PVLA: Recurrent Adapter with Partial Video-Language Alignment for Parameter-Efficient Transfer Learning in Low-Resource Video-Language Modeling
Nguyen, Thong, Wu, Xiaobao, Dong, Xinshuai, Le, Khoi, Hu, Zhiyuan, Nguyen, Cong-Duy, Ng, See-Kiong, Tuan, Luu Anh
Fully fine-tuning pretrained large-scale transformer models has become a popular paradigm for video-language modeling tasks, such as temporal language grounding and video-language summarization. With a growing number of tasks and limited training data, such full fine-tuning approach leads to costly model storage and unstable training. To overcome these shortcomings, we introduce lightweight adapters to the pre-trained model and only update them at fine-tuning time. However, existing adapters fail to capture intrinsic temporal relations among video frames or textual words. Moreover, they neglect the preservation of critical task-related information that flows from the raw video-language input into the adapter's low-dimensional space. To address these issues, we first propose a novel REcurrent ADapter (READ) that employs recurrent computation to enable temporal modeling capability. Second, we propose Partial Video-Language Alignment (PVLA) objective via the use of partial optimal transport to maintain task-related information flowing into our READ modules. We validate our READ-PVLA framework through extensive experiments where READ-PVLA significantly outperforms all existing fine-tuning strategies on multiple low-resource temporal language grounding and video-language summarization benchmarks.
DemaFormer: Damped Exponential Moving Average Transformer with Energy-Based Modeling for Temporal Language Grounding
Nguyen, Thong, Wu, Xiaobao, Dong, Xinshuai, Nguyen, Cong-Duy, Ng, See-Kiong, Tuan, Luu Anh
Temporal Language Grounding seeks to localize video moments that semantically correspond to a natural language query. Recent advances employ the attention mechanism to learn the relations between video moments and the text query. However, naive attention might not be able to appropriately capture such relations, resulting in ineffective distributions where target video moments are difficult to separate from the remaining ones. To resolve the issue, we propose an energy-based model framework to explicitly learn moment-query distributions. Moreover, we propose DemaFormer, a novel Transformer-based architecture that utilizes exponential moving average with a learnable damping factor to effectively encode moment-query inputs. Comprehensive experiments on four public temporal language grounding datasets showcase the superiority of our methods over the state-of-the-art baselines.
Vision-and-Language Pretraining
Nguyen, Thong, Nguyen, Cong-Duy, Wu, Xiaobao, Ng, See-Kiong, Luu, Anh Tuan
With the burgeoning amount of data of image-text pairs and diversity of Vision-and-Language (V\&L) tasks, scholars have introduced an abundance of deep learning models in this research domain. Furthermore, in recent years, transfer learning has also shown tremendous success in Computer Vision for tasks such as Image Classification, Object Detection, etc., and in Natural Language Processing for Question Answering, Machine Translation, etc. Inheriting the spirit of Transfer Learning, research works in V\&L have devised multiple pretraining techniques on large-scale datasets in order to enhance the performance of downstream tasks. The aim of this article is to provide a comprehensive revision of contemporary V\&L pretraining models. In particular, we categorize and delineate pretraining approaches, along with the summary of state-of-the-art vision-and-language pretrained models. Moreover, a list of training datasets and downstream tasks is supplied to further polish the perspective into V\&L pretraining. Lastly, we decided to take a further step to discuss numerous directions for future research.
Effective Neural Topic Modeling with Embedding Clustering Regularization
Wu, Xiaobao, Dong, Xinshuai, Nguyen, Thong, Luu, Anh Tuan
Topic models have been prevalent for decades with various applications. However, existing topic models commonly suffer from the notorious topic collapsing: discovered topics semantically collapse towards each other, leading to highly repetitive topics, insufficient topic discovery, and damaged model interpretability. In this paper, we propose a new neural topic model, Embedding Clustering Regularization Topic Model (ECRTM). Besides the existing reconstruction error, we propose a novel Embedding Clustering Regularization (ECR), which forces each topic embedding to be the center of a separately aggregated word embedding cluster in the semantic space. This enables each produced topic to contain distinct word semantics, which alleviates topic collapsing. Regularized by ECR, our ECRTM generates diverse and coherent topics together with high-quality topic distributions of documents. Extensive experiments on benchmark datasets demonstrate that ECRTM effectively addresses the topic collapsing issue and consistently surpasses state-of-the-art baselines in terms of topic quality, topic distributions of documents, and downstream classification tasks.
Zero-Shot Text Classification via Self-Supervised Tuning
Liu, Chaoqun, Zhang, Wenxuan, Chen, Guizhen, Wu, Xiaobao, Luu, Anh Tuan, Chang, Chip Hong, Bing, Lidong
Existing solutions to zero-shot text classification either conduct prompting with pre-trained language models, which is sensitive to the choices of templates, or rely on large-scale annotated data of relevant tasks for meta-tuning. In this work, we propose a new paradigm based on self-supervised learning to solve zero-shot text classification tasks by tuning the language models with unlabeled data, called self-supervised tuning. By exploring the inherent structure of free texts, we propose a new learning objective called first sentence prediction to bridge the gap between unlabeled data and text classification tasks. After tuning the model to learn to predict the first sentence in a paragraph based on the rest, the model is able to conduct zero-shot inference on unseen tasks such as topic classification and sentiment analysis. Experimental results show that our model outperforms the state-of-the-art baselines on 7 out of 10 tasks. Moreover, the analysis reveals that our model is less sensitive to the prompt design. Our code and pre-trained models are publicly available at https://github.com/DAMO-NLP-SG/SSTuning .
Gradient-Boosted Decision Tree for Listwise Context Model in Multimodal Review Helpfulness Prediction
Nguyen, Thong, Wu, Xiaobao, Dong, Xinshuai, Luu, Anh Tuan, Nguyen, Cong-Duy, Hai, Zhen, Bing, Lidong
Multimodal Review Helpfulness Prediction (MRHP) aims to rank product reviews based on predicted helpfulness scores and has been widely applied in e-commerce via presenting customers with useful reviews. Previous studies commonly employ fully-connected neural networks (FCNNs) as the final score predictor and pairwise loss as the training objective. However, FCNNs have been shown to perform inefficient splitting for review features, making the model difficult to clearly differentiate helpful from unhelpful reviews. Furthermore, pairwise objective, which works on review pairs, may not completely capture the MRHP goal to produce the ranking for the entire review list, and possibly induces low generalization during testing. To address these issues, we propose a listwise attention network that clearly captures the MRHP ranking context and a listwise optimization objective that enhances model generalization. We further propose gradient-boosted decision tree as the score predictor to efficaciously partition product reviews' representations. Extensive experiments demonstrate that our method achieves state-of-the-art results and polished generalization performance on two large-scale MRHP benchmark datasets.
Fact-Checking Complex Claims with Program-Guided Reasoning
Pan, Liangming, Wu, Xiaobao, Lu, Xinyuan, Luu, Anh Tuan, Wang, William Yang, Kan, Min-Yen, Nakov, Preslav
Fact-checking real-world claims often requires collecting multiple pieces of evidence and applying complex multi-step reasoning. In this paper, we present Program-Guided Fact-Checking (ProgramFC), a novel fact-checking model that decomposes complex claims into simpler sub-tasks that can be solved using a shared library of specialized functions. We first leverage the in-context learning ability of large language models to generate reasoning programs to guide the verification process. Afterward, we execute the program by delegating each sub-task to the corresponding sub-task handler. This process makes our model both explanatory and data-efficient, providing clear explanations of its reasoning process and requiring minimal training data. We evaluate ProgramFC on two challenging fact-checking datasets and show that it outperforms seven fact-checking baselines across different settings of evidence availability, with explicit output programs that benefit human debugging. Our codes and data are publicly available at https://github.com/mbzuai-nlp/ProgramFC.
InfoCTM: A Mutual Information Maximization Perspective of Cross-Lingual Topic Modeling
Wu, Xiaobao, Dong, Xinshuai, Nguyen, Thong, Liu, Chaoqun, Pan, Liangming, Luu, Anh Tuan
Cross-lingual topic models have been prevalent for cross-lingual text analysis by revealing aligned latent topics. However, most existing methods suffer from producing repetitive topics that hinder further analysis and performance decline caused by low-coverage dictionaries. In this paper, we propose the Cross-lingual Topic Modeling with Mutual Information (InfoCTM). Instead of the direct alignment in previous work, we propose a topic alignment with mutual information method. This works as a regularization to properly align topics and prevent degenerate topic representations of words, which mitigates the repetitive topic issue. To address the low-coverage dictionary issue, we further propose a cross-lingual vocabulary linking method that finds more linked cross-lingual words for topic alignment beyond the translations of a given dictionary. Extensive experiments on English, Chinese, and Japanese datasets demonstrate that our method outperforms state-of-the-art baselines, producing more coherent, diverse, and well-aligned topics and showing better transferability for cross-lingual classification tasks.