Wu, Xiao-Ming
Understanding Layer Significance in LLM Alignment
Shi, Guangyuan, Lu, Zexin, Dong, Xiaoyu, Zhang, Wenlong, Zhang, Xuanyu, Feng, Yujie, Wu, Xiao-Ming
Aligning large language models (LLMs) through fine-tuning is essential for tailoring them to specific applications. Therefore, understanding what LLMs learn during the alignment process is crucial. Recent studies suggest that alignment primarily adjusts a model's presentation style rather than its foundational knowledge, indicating that only certain components of the model are significantly impacted. To delve deeper into LLM alignment, we propose to identify which layers within LLMs are most critical to the alignment process, thereby uncovering how alignment influences model behavior at a granular level. We propose a novel approach to identify the important layers for LLM alignment (ILA). It involves learning a binary mask for each incremental weight matrix in the LoRA algorithm, indicating the significance of each layer. ILA consistently identifies important layers across various alignment datasets, with nearly 90% overlap even with substantial dataset differences, highlighting fundamental patterns in LLM alignment. Experimental results indicate that freezing non-essential layers improves overall model performance, while selectively tuning the most critical layers significantly enhances fine-tuning efficiency with minimal performance loss.
WeatherGFM: Learning A Weather Generalist Foundation Model via In-context Learning
Zhao, Xiangyu, Zhou, Zhiwang, Zhang, Wenlong, Liu, Yihao, Chen, Xiangyu, Gong, Junchao, Chen, Hao, Fei, Ben, Chen, Shiqi, Ouyang, Wanli, Wu, Xiao-Ming, Bai, Lei
The Earth's weather system involves intricate weather data modalities and diverse weather understanding tasks, which hold significant value to human life. Existing data-driven models focus on single weather understanding tasks (e.g., weather forecasting). While these models have achieved promising results, they fail to tackle various complex tasks within a single and unified model. Moreover, the paradigm that relies on limited real observations for a single scenario hinders the model's performance upper bound. Inspired by the in-context learning paradigm from visual foundation models and large language models, in this paper, we introduce the first generalist weather generalist foundation model (WeatherGFM) to address weather understanding tasks in a unified manner. Specifically, we first unify the representation and definition for diverse weather understanding tasks. Subsequently, we design weather prompt formats to handle different weather data modalities, including single, multiple, and temporal modalities. Finally, we adopt a visual prompting question-answering paradigm for the training of unified weather understanding tasks. Extensive experiments indicate that our WeatherGFM can effectively handle up to ten weather understanding tasks, including weather forecasting, super-resolution, weather image translation, and post-processing. Modeling Earth weather systems involves a series of complex subprocesses that are intended to transform intricate Earth observation data into applications like weather forecasting (Chen et al., 2023a; Bi et al., 2023), downscaling (Chen et al., 2022), assimilation (Huang et al., 2024), retrieval (Liu et al., 2011), and bias correction (Gong et al., 2024). During the past decade, many data-driven machine learning methods have been investigated for various weather understanding tasks and delivering desirable performance on specific tasks. For example, recent studies using large-scale training data (e.g., ERA5 reanalysis data (Hersbach et al., 2020)) have exceeded the accuracy of conventional numerical weather forecasts.
GEMeX: A Large-Scale, Groundable, and Explainable Medical VQA Benchmark for Chest X-ray Diagnosis
Liu, Bo, Zou, Ke, Zhan, Liming, Lu, Zexin, Dong, Xiaoyu, Chen, Yidi, Xie, Chengqiang, Cao, Jiannong, Wu, Xiao-Ming, Fu, Huazhu
Medical Visual Question Answering (VQA) is an essential technology that integrates computer vision and natural language processing to automatically respond to clinical inquiries about medical images. However, current medical VQA datasets exhibit two significant limitations: (1) they often lack visual and textual explanations for answers, which impedes their ability to satisfy the comprehension needs of patients and junior doctors; (2) they typically offer a narrow range of question formats, inadequately reflecting the diverse requirements encountered in clinical scenarios. These limitations pose significant challenges to the development of a reliable and user-friendly Med-VQA system. To address these challenges, we introduce a large-scale, Groundable, and Explainable Medical VQA benchmark for chest X-ray diagnosis (GEMeX), featuring several innovative components: (1) A multi-modal explainability mechanism that offers detailed visual and textual explanations for each question-answer pair, thereby enhancing answer comprehensibility; (2) Four distinct question types, open-ended, closed-ended, single-choice, and multiple-choice, that better reflect diverse clinical needs. We evaluated 10 representative large vision language models on GEMeX and found that they underperformed, highlighting the dataset's complexity. However, after fine-tuning a baseline model using the training set, we observed a significant performance improvement, demonstrating the dataset's effectiveness. The project is available at www.med-vqa.com/GEMeX.
UGotMe: An Embodied System for Affective Human-Robot Interaction
Li, Peizhen, Cao, Longbing, Wu, Xiao-Ming, Yu, Xiaohan, Yang, Runze
Equipping humanoid robots with the capability to understand emotional states of human interactants and express emotions appropriately according to situations is essential for affective human-robot interaction. However, enabling current vision-aware multimodal emotion recognition models for affective human-robot interaction in the real-world raises embodiment challenges: addressing the environmental noise issue and meeting real-time requirements. First, in multiparty conversation scenarios, the noises inherited in the visual observation of the robot, which may come from either 1) distracting objects in the scene or 2) inactive speakers appearing in the field of view of the robot, hinder the models from extracting emotional cues from vision inputs. Secondly, realtime response, a desired feature for an interactive system, is also challenging to achieve. To tackle both challenges, we introduce an affective human-robot interaction system called UGotMe designed specifically for multiparty conversations. Two denoising strategies are proposed and incorporated into the system to solve the first issue. Specifically, to filter out distracting objects in the scene, we propose extracting face images of the speakers from the raw images and introduce a customized active face extraction strategy to rule out inactive speakers. As for the second issue, we employ efficient data transmission from the robot to the local server to improve realtime response capability. We deploy UGotMe on a human robot named Ameca to validate its real-time inference capabilities in practical scenarios. Videos demonstrating real-world deployment are available at https://pi3-141592653.github.io/UGotMe/.
AI Can Be Cognitively Biased: An Exploratory Study on Threshold Priming in LLM-Based Batch Relevance Assessment
Chen, Nuo, Liu, Jiqun, Dong, Xiaoyu, Liu, Qijiong, Sakai, Tetsuya, Wu, Xiao-Ming
Cognitive biases are systematic deviations in thinking that lead to irrational judgments and problematic decision-making, extensively studied across various fields. Recently, large language models (LLMs) have shown advanced understanding capabilities but may inherit human biases from their training data. While social biases in LLMs have been well-studied, cognitive biases have received less attention, with existing research focusing on specific scenarios. The broader impact of cognitive biases on LLMs in various decision-making contexts remains underexplored. We investigated whether LLMs are influenced by the threshold priming effect in relevance judgments, a core task and widely-discussed research topic in the Information Retrieval (IR) coummunity. The priming effect occurs when exposure to certain stimuli unconsciously affects subsequent behavior and decisions. Our experiment employed 10 topics from the TREC 2019 Deep Learning passage track collection, and tested AI judgments under different document relevance scores, batch lengths, and LLM models, including GPT-3.5, GPT-4, LLaMa2-13B and LLaMa2-70B. Results showed that LLMs tend to give lower scores to later documents if earlier ones have high relevance, and vice versa, regardless of the combination and model used. Our finding demonstrates that LLM%u2019s judgments, similar to human judgments, are also influenced by threshold priming biases, and suggests that researchers and system engineers should take into account potential human-like cognitive biases in designing, evaluating, and auditing LLMs in IR tasks and beyond.
Real-to-Sim Grasp: Rethinking the Gap between Simulation and Real World in Grasp Detection
Cai, Jia-Feng, Chen, Zibo, Wu, Xiao-Ming, Jiang, Jian-Jian, Wei, Yi-Lin, Zheng, Wei-Shi
For 6-DoF grasp detection, simulated data is expandable to train more powerful model, but it faces the challenge of the large gap between simulation and real world. Previous works bridge this gap with a sim-to-real way. However, this way explicitly or implicitly forces the simulated data to adapt to the noisy real data when training grasp detectors, where the positional drift and structural distortion within the camera noise will harm the grasp learning. In this work, we propose a Real-to-Sim framework for 6-DoF Grasp detection, named R2SGrasp, with the key insight of bridging this gap in a real-to-sim way, which directly bypasses the camera noise in grasp detector training through an inference-time real-to-sim adaption. To achieve this real-to-sim adaptation, our R2SGrasp designs the Real-to-Sim Data Repairer (R2SRepairer) to mitigate the camera noise of real depth maps in data-level, and the Real-to-Sim Feature Enhancer (R2SEnhancer) to enhance real features with precise simulated geometric primitives in feature-level. To endow our framework with the generalization ability, we construct a large-scale simulated dataset cost-efficiently to train our grasp detector, which includes 64,000 RGB-D images with 14.4 million grasp annotations. Sufficient experiments show that R2SGrasp is powerful and our real-to-sim perspective is effective. The real-world experiments further show great generalization ability of R2SGrasp. Project page is available on https://isee-laboratory.github.io/R2SGrasp.
Minimizing PLM-Based Few-Shot Intent Detectors
Zhang, Haode, Wu, Xiao-Ming, Lam, Albert Y. S.
Recent research has demonstrated the feasibility of training efficient intent detectors based on pre-trained language model~(PLM) with limited labeled data. However, deploying these detectors in resource-constrained environments such as mobile devices poses challenges due to their large sizes. In this work, we aim to address this issue by exploring techniques to minimize the size of PLM-based intent detectors trained with few-shot data. Specifically, we utilize large language models (LLMs) for data augmentation, employ a cutting-edge model compression method for knowledge distillation, and devise a vocabulary pruning mechanism called V-Prune. Through these approaches, we successfully achieve a compression ratio of 21 in model memory usage, including both Transformer and the vocabulary, while maintaining almost identical performance levels on four real-world benchmarks.
An Economic Framework for 6-DoF Grasp Detection
Wu, Xiao-Ming, Cai, Jia-Feng, Jiang, Jian-Jian, Zheng, Dian, Wei, Yi-Lin, Zheng, Wei-Shi
Robotic grasping in clutters is a fundamental task in robotic manipulation. In this work, we propose an economic framework for 6-DoF grasp detection, aiming to economize the resource cost in training and meanwhile maintain effective grasp performance. To begin with, we discover that the dense supervision is the bottleneck of current SOTA methods that severely encumbers the entire training overload, meanwhile making the training difficult to converge. To solve the above problem, we first propose an economic supervision paradigm for efficient and effective grasping. This paradigm includes a well-designed supervision selection strategy, selecting key labels basically without ambiguity, and an economic pipeline to enable the training after selection. Furthermore, benefit from the economic supervision, we can focus on a specific grasp, and thus we devise a focal representation module, which comprises an interactive grasp head and a composite score estimation to generate the specific grasp more accurately. Combining all together, the Economic-Grasp framework is proposed. Our extensive experiments show that EconomicGrasp surpasses the SOTA grasp method by about 3AP on average, and with extremely low resource cost, for about 1/4 training time cost, 1/8 memory cost and 1/30 storage cost.
Classic GNNs are Strong Baselines: Reassessing GNNs for Node Classification
Luo, Yuankai, Shi, Lei, Wu, Xiao-Ming
Graph Transformers (GTs) have recently emerged as popular alternatives to traditional message-passing Graph Neural Networks (GNNs), due to their theoretically superior expressiveness and impressive performance reported on standard node classification benchmarks, often significantly outperforming GNNs. In this paper, we conduct a thorough empirical analysis to reevaluate the performance of three classic GNN models (GCN, GAT, and GraphSAGE) against GTs. Our findings suggest that the previously reported superiority of GTs may have been overstated due to suboptimal hyperparameter configurations in GNNs. Remarkably, with slight hyperparameter tuning, these classic GNN models achieve state-of-the-art performance, matching or even exceeding that of recent GTs across 17 out of the 18 diverse datasets examined. Additionally, we conduct detailed ablation studies to investigate the influence of various GNN configurations, such as normalization, dropout, residual connections, network depth, and jumping knowledge mode, on node classification performance. Our study aims to promote a higher standard of empirical rigor in the field of graph machine learning, encouraging more accurate comparisons and evaluations of model capabilities.
Grasp as You Say: Language-guided Dexterous Grasp Generation
Wei, Yi-Lin, Jiang, Jian-Jian, Xing, Chengyi, Tan, Xiantuo, Wu, Xiao-Ming, Li, Hao, Cutkosky, Mark, Zheng, Wei-Shi
This paper explores a novel task ""Dexterous Grasp as You Say"" (DexGYS), enabling robots to perform dexterous grasping based on human commands expressed in natural language. However, the development of this field is hindered by the lack of datasets with natural human guidance; thus, we propose a language-guided dexterous grasp dataset, named DexGYSNet, offering high-quality dexterous grasp annotations along with flexible and fine-grained human language guidance. Our dataset construction is cost-efficient, with the carefully-design hand-object interaction retargeting strategy, and the LLM-assisted language guidance annotation system. Equipped with this dataset, we introduce the DexGYSGrasp framework for generating dexterous grasps based on human language instructions, with the capability of producing grasps that are intent-aligned, high quality and diversity. To achieve this capability, our framework decomposes the complex learning process into two manageable progressive objectives and introduce two components to realize them. The first component learns the grasp distribution focusing on intention alignment and generation diversity. And the second component refines the grasp quality while maintaining intention consistency. Extensive experiments are conducted on DexGYSNet and real world environment for validation.