Goto

Collaborating Authors

 Wu, Ting-fan


Whose Vote Should Count More: Optimal Integration of Labels from Labelers of Unknown Expertise

Neural Information Processing Systems

Modern machine learning-based approaches to computer vision require very large databases of labeled images. Some contemporary vision systems already require on the order of millions of images for training (e.g., Omron face detector). While the collection of these large databases is becoming a bottleneck, new Internet-based services that allow labelers from around the world to be easily hired and managed provide a promising solution. However, using these services to label large databases brings with it new theoretical and practical challenges: (1) The labelers may have wide ranging levels of expertise which are unknown a priori, and in some cases may be adversarial; (2) images may vary in their level of difficulty; and (3) multiple labels for the same image must be combined to provide an estimate of the actual label of the image. Probabilistic approaches provide a principled way to approach these problems. In this paper we present a probabilistic model and use it to simultaneously infer the label of each image, the expertise of each labeler, and the difficulty of each image. On both simulated and real data, we demonstrate that the model outperforms the commonly used ``Majority Vote heuristic for inferring image labels, and is robust to both adversarial and noisy labelers.


Probability Estimates for Multi-Class Classification by Pairwise Coupling

Neural Information Processing Systems

Pairwise coupling is a popular multi-class classification method that combines together all pairwise comparisons for each pair of classes. This paper presents two approaches for obtaining class probabilities. Both methods can be reduced to linear systems and are easy to implement. We show conceptually and experimentally that the proposed approaches are more stable than two existing popular methods: voting and [3].


Probability Estimates for Multi-Class Classification by Pairwise Coupling

Neural Information Processing Systems

Pairwise coupling is a popular multi-class classification method that combines together all pairwise comparisons for each pair of classes. This paper presents two approaches for obtaining class probabilities. Both methods can be reduced to linear systems and are easy to implement. We show conceptually and experimentally that the proposed approaches are more stable than two existing popular methods: voting and [3].


Probability Estimates for Multi-Class Classification by Pairwise Coupling

Neural Information Processing Systems

Pairwise coupling is a popular multi-class classification method that combines together all pairwise comparisons for each pair of classes. This paper presents two approaches for obtaining class probabilities. Both methods can be reduced to linear systems and are easy to implement. We show conceptually and experimentally that the proposed approaches are more stable than two existing popular methods: voting and [3].