Wu, Runze
Digital Player: Evaluating Large Language Models based Human-like Agent in Games
Wang, Jiawei, Wang, Kai, Lin, Shaojie, Wu, Runze, Xu, Bihan, Jiang, Lingeng, Zhao, Shiwei, Zhu, Renyu, Liu, Haoyu, Hu, Zhipeng, Fan, Zhong, Li, Le, Lyu, Tangjie, Fan, Changjie
With the rapid advancement of Large Language Models (LLMs), LLM-based autonomous agents have shown the potential to function as digital employees, such as digital analysts, teachers, and programmers. In this paper, we develop an application-level testbed based on the open-source strategy game "Unciv", which has millions of active players, to enable researchers to build a "data flywheel" for studying human-like agents in the "digital players" task. This "Civilization"-like game features expansive decision-making spaces along with rich linguistic interactions such as diplomatic negotiations and acts of deception, posing significant challenges for LLM-based agents in terms of numerical reasoning and long-term planning. Another challenge for "digital players" is to generate human-like responses for social interaction, collaboration, and negotiation with human players. The open-source project can be found at https:/github.com/fuxiAIlab/CivAgent.
Rank Aggregation in Crowdsourcing for Listwise Annotations
Luo, Wenshui, Liu, Haoyu, Ding, Yongliang, Zhou, Tao, wan, Sheng, Wu, Runze, Lin, Minmin, Zhang, Cong, Fan, Changjie, Gong, Chen
Rank aggregation through crowdsourcing has recently gained significant attention, particularly in the context of listwise ranking annotations. However, existing methods primarily focus on a single problem and partial ranks, while the aggregation of listwise full ranks across numerous problems remains largely unexplored. This scenario finds relevance in various applications, such as model quality assessment and reinforcement learning with human feedback. In light of practical needs, we propose LAC, a Listwise rank Aggregation method in Crowdsourcing, where the global position information is carefully measured and included. In our design, an especially proposed annotation quality indicator is employed to measure the discrepancy between the annotated rank and the true rank. We also take the difficulty of the ranking problem itself into consideration, as it directly impacts the performance of annotators and consequently influences the final results. To our knowledge, LAC is the first work to directly deal with the full rank aggregation problem in listwise crowdsourcing, and simultaneously infer the difficulty of problems, the ability of annotators, and the ground-truth ranks in an unsupervised way. To evaluate our method, we collect a real-world business-oriented dataset for paragraph ranking. Experimental results on both synthetic and real-world benchmark datasets demonstrate the effectiveness of our proposed LAC method.
FreeAL: Towards Human-Free Active Learning in the Era of Large Language Models
Xiao, Ruixuan, Dong, Yiwen, Zhao, Junbo, Wu, Runze, Lin, Minmin, Chen, Gang, Wang, Haobo
Collecting high-quality labeled data for model training is notoriously time-consuming and labor-intensive for various NLP tasks. While copious solutions, such as active learning for small language models (SLMs) and prevalent in-context learning in the era of large language models (LLMs), have been proposed and alleviate the labeling burden to some extent, their performances are still subject to human intervention. It is still underexplored how to reduce the annotation cost in the LLMs era. To bridge this, we revolutionize traditional active learning and propose an innovative collaborative learning framework FreeAL to interactively distill and filter the task-specific knowledge from LLMs. During collaborative training, an LLM serves as an active annotator inculcating its coarse-grained knowledge, while a downstream SLM is incurred as a student to filter out high-quality in-context samples to feedback LLM for the subsequent label refinery. Extensive experiments on eight benchmark datasets demonstrate that FreeAL largely enhances the zero-shot performances for both SLM and LLM without any human supervision. The code is available at https://github.com/Justherozen/FreeAL .
Towards Long-term Annotators: A Supervised Label Aggregation Baseline
Liu, Haoyu, Wang, Fei, Lin, Minmin, Wu, Runze, Zhu, Renyu, Zhao, Shiwei, Wang, Kai, Lv, Tangjie, Fan, Changjie
Relying on crowdsourced workers, data crowdsourcing platforms are able to efficiently provide vast amounts of labeled data. Due to the variability in the annotation quality of crowd workers, modern techniques resort to redundant annotations and subsequent label aggregation to infer true labels. However, these methods require model updating during the inference, posing challenges in real-world implementation. Meanwhile, in recent years, many data labeling tasks have begun to require skilled and experienced annotators, leading to an increasing demand for long-term annotators. These annotators could leave substantial historical annotation records on the crowdsourcing platforms, which can benefit label aggregation, but are ignored by previous works. Hereby, in this paper, we propose a novel label aggregation technique, which does not need any model updating during inference and can extensively explore the historical annotation records. We call it SuperLA, a Supervised Label Aggregation method. Inside this model, we design three types of input features and a straightforward neural network structure to merge all the information together and subsequently produce aggregated labels. Based on comparison experiments conducted on 22 public datasets and 11 baseline methods, we find that SuperLA not only outperforms all those baselines in inference performance but also offers significant advantages in terms of efficiency.
InstanT: Semi-supervised Learning with Instance-dependent Thresholds
Li, Muyang, Wu, Runze, Liu, Haoyu, Yu, Jun, Yang, Xun, Han, Bo, Liu, Tongliang
Semi-supervised learning (SSL) has been a fundamental challenge in machine learning for decades. The primary family of SSL algorithms, known as pseudo-labeling, involves assigning pseudo-labels to confident unlabeled instances and incorporating them into the training set. Therefore, the selection criteria of confident instances are crucial to the success of SSL. Recently, there has been growing interest in the development of SSL methods that use dynamic or adaptive thresholds. Yet, these methods typically apply the same threshold to all samples, or use class-dependent thresholds for instances belonging to a certain class, while neglecting instance-level information. In this paper, we propose the study of instance-dependent thresholds, which has the highest degree of freedom compared with existing methods. Specifically, we devise a novel instance-dependent threshold function for all unlabeled instances by utilizing their instance-level ambiguity and the instance-dependent error rates of pseudo-labels, so instances that are more likely to have incorrect pseudo-labels will have higher thresholds. Furthermore, we demonstrate that our instance-dependent threshold function provides a bounded probabilistic guarantee for the correctness of the pseudo-labels it assigns.
Examining the Effect of Pre-training on Time Series Classification
Pu, Jiashu, Zhao, Shiwei, Cheng, Ling, Chang, Yongzhu, Wu, Runze, Lv, Tangjie, Zhang, Rongsheng
Although the pre-training followed by fine-tuning paradigm is used extensively in many fields, there is still some controversy surrounding the impact of pre-training on the fine-tuning process. Currently, experimental findings based on text and image data lack consensus. To delve deeper into the unsupervised pre-training followed by fine-tuning paradigm, we have extended previous research to a new modality: time series. In this study, we conducted a thorough examination of 150 classification datasets derived from the Univariate Time Series (UTS) and Multivariate Time Series (MTS) benchmarks. Our analysis reveals several key conclusions. (i) Pre-training can only help improve the optimization process for models that fit the data poorly, rather than those that fit the data well. (ii) Pre-training does not exhibit the effect of regularization when given sufficient training time. (iii) Pre-training can only speed up convergence if the model has sufficient ability to fit the data. (iv) Adding more pre-training data does not improve generalization, but it can strengthen the advantage of pre-training on the original data volume, such as faster convergence. (v) While both the pre-training task and the model structure determine the effectiveness of the paradigm on a given dataset, the model structure plays a more significant role.
Rethinking Noisy Label Learning in Real-world Annotation Scenarios from the Noise-type Perspective
Zhu, Renyu, Liu, Haoyu, Wu, Runze, Lin, Minmin, Lv, Tangjie, Fan, Changjie, Wang, Haobo
In this paper, we investigate the problem of learning with noisy labels in real-world annotation scenarios, where noise can be categorized into two types: factual noise and ambiguity noise. To better distinguish these noise types and utilize their semantics, we propose a novel sample selection-based approach for noisy label learning, called Proto-semi. Proto-semi initially divides all samples into the confident and unconfident datasets via warm-up. By leveraging the confident dataset, prototype vectors are constructed to capture class characteristics. Subsequently, the distances between the unconfident samples and the prototype vectors are calculated to facilitate noise classification. Based on these distances, the labels are either corrected or retained, resulting in the refinement of the confident and unconfident datasets. Finally, we introduce a semi-supervised learning method to enhance training. Empirical evaluations on a real-world annotated dataset substantiate the robustness of Proto-semi in handling the problem of learning from noisy labels. Meanwhile, the prototype-based repartitioning strategy is shown to be effective in mitigating the adverse impact of label noise. Our code and data are available at https://github.com/fuxiAIlab/ProtoSemi.
ProMix: Combating Label Noise via Maximizing Clean Sample Utility
Xiao, Ruixuan, Dong, Yiwen, Wang, Haobo, Feng, Lei, Wu, Runze, Chen, Gang, Zhao, Junbo
Learning with Noisy Labels (LNL) has become an appealing topic, as imperfectly annotated data are relatively cheaper to obtain. Recent state-of-the-art approaches employ specific selection mechanisms to separate clean and noisy samples and then apply Semi-Supervised Learning (SSL) techniques for improved performance. However, the selection step mostly provides a medium-sized and decent-enough clean subset, which overlooks a rich set of clean samples. To fulfill this, we propose a novel LNL framework ProMix that attempts to maximize the utility of clean samples for boosted performance. Key to our method, we propose a matched high confidence selection technique that selects those examples with high confidence scores and matched predictions with given labels to dynamically expand a base clean sample set. To overcome the potential side effect of excessive clean set selection procedure, we further devise a novel SSL framework that is able to train balanced and unbiased classifiers on the separated clean and noisy samples. Extensive experiments demonstrate that ProMix significantly advances the current state-of-the-art results on multiple benchmarks with different types and levels of noise. It achieves an average improvement of 2.48\% on the CIFAR-N dataset. The code is available at https://github.com/Justherozen/ProMix
RL4RS: A Real-World Dataset for Reinforcement Learning based Recommender System
Wang, Kai, Zou, Zhene, Zhao, Minghao, Deng, Qilin, Shang, Yue, Liang, Yile, Wu, Runze, Shen, Xudong, Lyu, Tangjie, Fan, Changjie
Reinforcement learning based recommender systems (RL-based RS) aim at learning a good policy from a batch of collected data, by casting recommendations to multi-step decision-making tasks. However, current RL-based RS research commonly has a large reality gap. In this paper, we introduce the first open-source real-world dataset, RL4RS, hoping to replace the artificial datasets and semi-simulated RS datasets previous studies used due to the resource limitation of the RL-based RS domain. Unlike academic RL research, RL-based RS suffers from the difficulties of being well-validated before deployment. We attempt to propose a new systematic evaluation framework, including evaluation of environment simulation, evaluation on environments, counterfactual policy evaluation, and evaluation on environments built from test set. In summary, the RL4RS (Reinforcement Learning for Recommender Systems), a new resource with special concerns on the reality gaps, contains two real-world datasets, data understanding tools, tuned simulation environments, related advanced RL baselines, batch RL baselines, and counterfactual policy evaluation algorithms. The RL4RS suite can be found at https://github.com/fuxiAIlab/RL4RS. In addition to the RL-based recommender systems, we expect the resource to contribute to research in applied reinforcement learning.
AutoMLP: Automated MLP for Sequential Recommendations
Li, Muyang, Zhang, Zijian, Zhao, Xiangyu, Wang, Wanyu, Zhao, Minghao, Wu, Runze, Guo, Ruocheng
Sequential recommender systems aim to predict users' next interested item given their historical interactions. However, a long-standing issue is how to distinguish between users' long/short-term interests, which may be heterogeneous and contribute differently to the next recommendation. Existing approaches usually set pre-defined short-term interest length by exhaustive search or empirical experience, which is either highly inefficient or yields subpar results. The recent advanced transformer-based models can achieve state-of-the-art performances despite the aforementioned issue, but they have a quadratic computational complexity to the length of the input sequence. To this end, this paper proposes a novel sequential recommender system, AutoMLP, aiming for better modeling users' long/short-term interests from their historical interactions. In addition, we design an automated and adaptive search algorithm for preferable short-term interest length via end-to-end optimization. Through extensive experiments, we show that AutoMLP has competitive performance against state-of-the-art methods, while maintaining linear computational complexity.