Goto

Collaborating Authors

 Wu, Qinzhuo


ReachAgent: Enhancing Mobile Agent via Page Reaching and Operation

arXiv.org Artificial Intelligence

Recently, mobile AI agents have gained increasing attention. Given a task, mobile AI agents can interact with mobile devices in multiple steps and finally form a GUI flow that solves the task. However, existing agents tend to focus on most task-relevant elements at each step, leading to local optimal solutions and ignoring the overall GUI flow. To address this issue, we constructed a training dataset called MobileReach, which breaks the task into page reaching and operation subtasks. Furthermore, we propose ReachAgent, a two-stage framework that focuses on improving its task-completion abilities. It utilizes the page reaching and page operation subtasks, along with reward-based preference GUI flows, to further enhance the agent. Experimental results show that ReachAgent significantly improves the IoU Acc and Text Acc by 7.12% and 7.69% on the step-level and 4.72% and 4.63% on the task-level compared to the SOTA agent. Our data and code will be released upon acceptance.


ToolPlanner: A Tool Augmented LLM for Multi Granularity Instructions with Path Planning and Feedback

arXiv.org Artificial Intelligence

Recently, tool-augmented LLMs have gained increasing attention. Given an instruction, tool-augmented LLMs can interact with various external tools in multiple rounds and provide a final answer. However, previous LLMs were trained on overly detailed instructions, which included API names or parameters, while real users would not explicitly mention these API details. This leads to a gap between trained LLMs and real-world scenarios. In addition, most works ignore whether the interaction process follows the instruction. To address these issues, we constructed a training dataset called MGToolBench, which contains statement and category-level instructions to better reflect real-world scenarios. In addition, we propose ToolPlanner, a two-stage reinforcement learning framework that utilizes path planning and two feedback mechanisms to enhance the LLM's task completion and instruction-following capabilities. Experimental results show that ToolPlanner significantly improves the Match Rate, Pass Rate and Win Rate by 26.8%, 20.2%, and 5.6% compared to the SOTA model. Human evaluation verifies that the multi-granularity instructions can better align with users' usage habits. Our data and code will be released upon acceptance.


MobileVLM: A Vision-Language Model for Better Intra- and Inter-UI Understanding

arXiv.org Artificial Intelligence

Recently, mobile AI agents based on VLMs have been gaining increasing attention. These works typically utilize VLM as a foundation, fine-tuning it with instruction-based mobile datasets. However, these VLMs are typically pre-trained on general-domain data, which often results in a lack of fundamental capabilities specific to the mobile domain. Therefore, they may struggle to recognize specific UI elements and understand intra-UI fine-grained information. In addition, the current fine-tuning task focuses on interacting with the most relevant element for the given instruction. These fine-tuned VLMs may still ignore the relationships between UI pages, neglect the roles of elements in page transitions and lack inter-UI understanding. To address issues, we propose a VLM called MobileVLM, which includes two additional pre-training stages to enhance both intra- and inter-UI understanding. We defined four UI-based pre-training tasks, enabling the model to better perceive fine-grained elements and capture page transition actions. To address the lack of mobile pre-training data, we built a large Chinese mobile dataset Mobile3M from scratch, which contains 3 million UI pages, and real-world transition actions, forming a directed graph structure. Experimental results show MobileVLM excels on both our test set and public mobile benchmarks, outperforming existing VLMs.


TextFlint: Unified Multilingual Robustness Evaluation Toolkit for Natural Language Processing

arXiv.org Artificial Intelligence

Various robustness evaluation methodologies from different perspectives have been proposed for different natural language processing (NLP) tasks. These methods have often focused on either universal or task-specific generalization capabilities. In this work, we propose a multilingual robustness evaluation platform for NLP tasks (TextFlint) that incorporates universal text transformation, task-specific transformation, adversarial attack, subpopulation, and their combinations to provide comprehensive robustness analysis. TextFlint enables practitioners to automatically evaluate their models from all aspects or to customize their evaluations as desired with just a few lines of code. To guarantee user acceptability, all the text transformations are linguistically based, and we provide a human evaluation for each one. TextFlint generates complete analytical reports as well as targeted augmented data to address the shortcomings of the model's robustness. To validate TextFlint's utility, we performed large-scale empirical evaluations (over 67,000 evaluations) on state-of-the-art deep learning models, classic supervised methods, and real-world systems. Almost all models showed significant performance degradation, including a decline of more than 50% of BERT's prediction accuracy on tasks such as aspect-level sentiment classification, named entity recognition, and natural language inference. Therefore, we call for the robustness to be included in the model evaluation, so as to promote the healthy development of NLP technology.