Goto

Collaborating Authors

 Wu, Qihui


CNN+Transformer Based Anomaly Traffic Detection in UAV Networks for Emergency Rescue

arXiv.org Artificial Intelligence

The unmanned aerial vehicle (UAV) network has gained significant attentions in recent years due to its various applications. However, the traffic security becomes the key threatening public safety issue in an emergency rescue system due to the increasing vulnerability of UAVs to cyber attacks in environments with high heterogeneities. Hence, in this paper, we propose a novel anomaly traffic detection architecture for UAV networks based on the software-defined networking (SDN) framework and blockchain technology. Specifically, SDN separates the control and data plane to enhance the network manageability and security. Meanwhile, the blockchain provides decentralized identity authentication and data security records. Beisdes, a complete security architecture requires an effective mechanism to detect the time-series based abnormal traffic. Thus, an integrated algorithm combining convolutional neural networks (CNNs) and Transformer (CNN+Transformer) for anomaly traffic detection is developed, which is called CTranATD. Finally, the simulation results show that the proposed CTranATD algorithm is effective and outperforms the individual CNN, Transformer, and LSTM algorithms for detecting anomaly traffic.


Revolution of Wireless Signal Recognition for 6G: Recent Advances, Challenges and Future Directions

arXiv.org Artificial Intelligence

Wireless signal recognition (WSR) is a crucial technique for intelligent communications and spectrum sharing in the next six-generation (6G) wireless communication networks. It can be utilized to enhance network performance and efficiency, improve quality of service (QoS), and improve network security and reliability. Additionally, WSR can be applied for military applications such as signal interception, signal race, and signal abduction. In the past decades, great efforts have been made for the research of WSR. Earlier works mainly focus on model-based methods, including likelihood-based (LB) and feature-based (FB) methods, which have taken the leading position for many years. With the emergence of artificial intelligence (AI), intelligent methods including machine learning-based (ML-based) and deep learning-based (DL-based) methods have been developed to extract the features of the received signals and perform the classification. In this work, we provide a comprehensive review of WSR from the view of applications, main tasks, recent advances, datasets and evaluation metrics, challenges, and future directions. Specifically, intelligent WSR methods are introduced from the perspective of model, data, learning and implementation. Moreover, we analyze the challenges for WSR from the view of complex, dynamic, and open 6G wireless environments and discuss the future directions for WSR. This survey is expected to provide a comprehensive overview of the state-of-the-art WSR techniques and inspire new research directions for WSR in 6G networks.


Generative AI-Enhanced Cooperative MEC of UAVs and Ground Stations for Unmanned Surface Vehicles

arXiv.org Artificial Intelligence

The increasing deployment of unmanned surface vehicles (USVs) require computational support and coverage in applications such as maritime search and rescue. Unmanned aerial vehicles (UAVs) can offer low-cost, flexible aerial services, and ground stations (GSs) can provide powerful supports, which can cooperate to help the USVs in complex scenarios. However, the collaboration between UAVs and GSs for USVs faces challenges of task uncertainties, USVs trajectory uncertainties, heterogeneities, and limited computational resources. To address these issues, we propose a cooperative UAV and GS based robust multi-access edge computing framework to assist USVs in completing computational tasks. Specifically, we formulate the optimization problem of joint task offloading and UAV trajectory to minimize the total execution time, which is in the form of mixed integer nonlinear programming and NP-hard to tackle. Therefore, we propose the algorithm of generative artificial intelligence-enhanced heterogeneous agent proximal policy optimization (GAI-HAPPO). The proposed algorithm integrates GAI models to enhance the actor network ability to model complex environments and extract high-level features, thereby allowing the algorithm to predict uncertainties and adapt to dynamic conditions. Additionally, GAI stabilizes the critic network, addressing the instability of multi-agent reinforcement learning approaches. Finally, extensive simulations demonstrate that the proposed algorithm outperforms the existing benchmark methods, thus highlighting the potentials in tackling intricate, cross-domain issues in the considered scenarios.


Data-and-Semantic Dual-Driven Spectrum Map Construction for 6G Spectrum Management

arXiv.org Artificial Intelligence

Spectrum maps reflect the utilization and distribution of spectrum resources in the electromagnetic environment, serving as an effective approach to support spectrum management. However, the construction of spectrum maps in urban environments is challenging because of high-density connection and complex terrain. Moreover, the existing spectrum map construction methods are typically applied to a fixed frequency, which cannot cover the entire frequency band. To address the aforementioned challenges, a UNet-based data-and-semantic dual-driven method is proposed by introducing the semantic knowledge of binary city maps and binary sampling location maps to enhance the accuracy of spectrum map construction in complex urban environments with dense communications. Moreover, a joint frequency-space reasoning model is exploited to capture the correlation of spectrum data in terms of space and frequency, enabling the realization of complete spectrum map construction without sampling all frequencies of spectrum data. The simulation results demonstrate that the proposed method can infer the spectrum utilization status of missing frequencies and improve the completeness of the spectrum map construction. Furthermore, the accuracy of spectrum map construction achieved by the proposed data-and-semantic dual-driven method outperforms the benchmark schemes, especially in scenarios with low sampling density.


Robust UAV Path Planning with Obstacle Avoidance for Emergency Rescue

arXiv.org Artificial Intelligence

The unmanned aerial vehicles (UAVs) are efficient tools for diverse tasks such as electronic reconnaissance, agricultural operations and disaster relief. In the complex three-dimensional (3D) environments, the path planning with obstacle avoidance for UAVs is a significant issue for security assurance. In this paper, we construct a comprehensive 3D scenario with obstacles and no-fly zones for dynamic UAV trajectory. Moreover, a novel artificial potential field algorithm coupled with simulated annealing (APF-SA) is proposed to tackle the robust path planning problem. APF-SA modifies the attractive and repulsive potential functions and leverages simulated annealing to escape local minimum and converge to globally optimal solutions. Simulation results demonstrate that the effectiveness of APF-SA, enabling efficient autonomous path planning for UAVs with obstacle avoidance.


Deep Learning for Spectrum Prediction in Cognitive Radio Networks: State-of-the-Art, New Opportunities, and Challenges

arXiv.org Artificial Intelligence

Spectrum prediction is considered to be a promising technology that enhances spectrum efficiency by assisting dynamic spectrum access (DSA) in cognitive radio networks (CRN). Nonetheless, the highly nonlinear nature of spectrum data across time, frequency, and space domains, coupled with the intricate spectrum usage patterns, poses challenges for accurate spectrum prediction. Deep learning (DL), recognized for its capacity to extract nonlinear features, has been applied to solve these challenges. This paper first shows the advantages of applying DL by comparing with traditional prediction methods. Then, the current state-of-the-art DL-based spectrum prediction techniques are reviewed and summarized in terms of intra-band and crossband prediction. Notably, this paper uses a real-world spectrum dataset to prove the advancements of DL-based methods. Then, this paper proposes a novel intra-band spatiotemporal spectrum prediction framework named ViTransLSTM. This framework integrates visual self-attention and long short-term memory to capture both local and global long-term spatiotemporal dependencies of spectrum usage patterns. Similarly, the effectiveness of the proposed framework is validated on the aforementioned real-world dataset. Finally, the paper presents new related challenges and potential opportunities for future research.


IRS-Enhanced Secure Semantic Communication Networks: Cross-Layer and Context-Awared Resource Allocation

arXiv.org Artificial Intelligence

Learning-task oriented semantic communication is pivotal in optimizing transmission efficiency by extracting and conveying essential semantics tailored to specific tasks, such as image reconstruction and classification. Nevertheless, the challenge of eavesdropping poses a formidable threat to semantic privacy due to the open nature of wireless communications. In this paper, intelligent reflective surface (IRS)-enhanced secure semantic communication (IRS-SSC) is proposed to guarantee the physical layer security from a task-oriented semantic perspective. Specifically, a multi-layer codebook is exploited to discretize continuous semantic features and describe semantics with different numbers of bits, thereby meeting the need for hierarchical semantic representation and further enhancing the transmission efficiency. Novel semantic security metrics, i.e., secure semantic rate (S-SR) and secure semantic spectrum efficiency (S-SSE), are defined to map the task-oriented security requirements at the application layer into the physical layer. To achieve artificial intelligence (AI)-native secure communication, we propose a noise disturbance enhanced hybrid deep reinforcement learning (NdeHDRL)-based resource allocation scheme. This scheme dynamically maximizes the S-SSE by jointly optimizing the bits for semantic representations, reflective coefficients of the IRS, and the subchannel assignment. Moreover, we propose a novel semantic context awared state space (SCA-SS) to fusion the high-dimensional semantic space and the observable system state space, which enables the agent to perceive semantic context and solves the dimensional catastrophe problem. Simulation results demonstrate the efficiency of our proposed schemes in both enhancing the security performance and the S-SSE compared to several benchmark schemes.


Cooperative Cognitive Dynamic System in UAV Swarms: Reconfigurable Mechanism and Framework

arXiv.org Artificial Intelligence

As the demands for immediate and effective responses increase in both civilian and military domains, the unmanned aerial vehicle (UAV) swarms emerge as effective solutions, in which multiple cooperative UAVs can work together to achieve specific goals. However, how to manage such complex systems to ensure real-time adaptability lack sufficient researches. Hence, in this paper, we propose the cooperative cognitive dynamic system (CCDS), to optimize the management for UAV swarms. CCDS leverages a hierarchical and cooperative control structure that enables real-time data processing and decision. Accordingly, CCDS optimizes the UAV swarm management via dynamic reconfigurability and adaptive intelligent optimization. In addition, CCDS can be integrated with the biomimetic mechanism to efficiently allocate tasks for UAV swarms. Further, the distributed coordination of CCDS ensures reliable and resilient control, thus enhancing the adaptability and robustness. Finally, the potential challenges and future directions are analyzed, to provide insights into managing UAV swarms in dynamic heterogeneous networking.


Spectrum Sharing between UAV-based Wireless Mesh Networks and Ground Networks

arXiv.org Artificial Intelligence

The unmanned aerial vehicle (UAV)-based wireless mesh networks can economically provide wireless services for the areas with disasters. However, the capacity of air-to-air communications is limited due to the multi-hop transmissions. In this paper, the spectrum sharing between UAV-based wireless mesh networks and ground networks is studied to improve the capacity of the UAV networks. Considering the distribution of UAVs as a three-dimensional (3D) homogeneous Poisson point process (PPP) within a vertical range, the stochastic geometry is applied to analyze the impact of the height of UAVs, the transmit power of UAVs, the density of UAVs and the vertical range, etc., on the coverage probability of ground network user and UAV network user, respectively. The optimal height of UAVs is numerically achieved in maximizing the capacity of UAV networks with the constraint of the coverage probability of ground network user. This paper provides a basic guideline for the deployment of UAV-based wireless mesh networks.


Routing Recovery for UAV Networks with Deliberate Attacks: A Reinforcement Learning based Approach

arXiv.org Artificial Intelligence

The unmanned aerial vehicle (UAV) network is popular these years due to its various applications. In the UAV network, routing is significantly affected by the distributed network topology, leading to the issue that UAVs are vulnerable to deliberate damage. Hence, this paper focuses on the routing plan and recovery for UAV networks with attacks. In detail, a deliberate attack model based on the importance of nodes is designed to represent enemy attacks. Then, a node importance ranking mechanism is presented, considering the degree of nodes and link importance. However, it is intractable to handle the routing problem by traditional methods for UAV networks, since link connections change with the UAV availability. Hence, an intelligent algorithm based on reinforcement learning is proposed to recover the routing path when UAVs are attacked. Simulations are conducted and numerical results verify the proposed mechanism performs better than other referred methods.