Goto

Collaborating Authors

 Wu, Peter


Articulatory Encodec: Vocal Tract Kinematics as a Codec for Speech

arXiv.org Artificial Intelligence

Vocal tract articulation is a natural, grounded control space of speech production. The spatiotemporal coordination of articulators combined with the vocal source shapes intelligible speech sounds to enable effective spoken communication. Based on this physiological grounding of speech, we propose a new framework of neural encoding-decoding of speech -- articulatory encodec. The articulatory encodec comprises an articulatory analysis model that infers articulatory features from speech audio, and an articulatory synthesis model that synthesizes speech audio from articulatory features. The articulatory features are kinematic traces of vocal tract articulators and source features, which are intuitively interpretable and controllable, being the actual physical interface of speech production. An additional speaker identity encoder is jointly trained with the articulatory synthesizer to inform the voice texture of individual speakers. By training on large-scale speech data, we achieve a fully intelligible, high-quality articulatory synthesizer that generalizes to unseen speakers. Furthermore, the speaker embedding is effectively disentangled from articulations, which enables accent-perserving zero-shot voice conversion. To the best of our knowledge, this is the first demonstration of universal, high-performance articulatory inference and synthesis, suggesting the proposed framework as a powerful coding system of speech.


Towards an Interpretable Representation of Speaker Identity via Perceptual Voice Qualities

arXiv.org Artificial Intelligence

Unlike other data modalities such as text and vision, speech does not lend itself to easy interpretation. While lay people can understand how to describe an image or sentence via perception, non-expert descriptions of speech often end at high-level demographic information, such as gender or age. In this paper, we propose a possible interpretable representation of speaker identity based on perceptual voice qualities (PQs). By adding gendered PQs to the pathology-focused Consensus Auditory-Perceptual Evaluation of Voice (CAPE-V) protocol, our PQ-based approach provides a perceptual latent space of the character of adult voices that is an intermediary of abstraction between high-level demographics and low-level acoustic, physical, or learned representations. Contrary to prior belief, we demonstrate that these PQs are hearable by ensembles of non-experts, and further demonstrate that the information encoded in a PQ-based representation is predictable by various speech representations.


CiwaGAN: Articulatory information exchange

arXiv.org Artificial Intelligence

Humans encode information into sounds by controlling articulators and decode information from sounds using the auditory apparatus. This paper introduces CiwaGAN, a model of human spoken language acquisition that combines unsupervised articulatory modeling with an unsupervised model of information exchange through the auditory modality. While prior research includes unsupervised articulatory modeling and information exchange separately, our model is the first to combine the two components. The paper also proposes an improved articulatory model with more interpretable internal representations. The proposed CiwaGAN model is the most realistic approximation of human spoken language acquisition using deep learning. As such, it is useful for cognitively plausible simulations of the human speech act.


Evidence of Vocal Tract Articulation in Self-Supervised Learning of Speech

arXiv.org Artificial Intelligence

Recent self-supervised learning (SSL) models have proven to learn rich representations of speech, which can readily be utilized by diverse downstream tasks. To understand such utilities, various analyses have been done for speech SSL models to reveal which and how information is encoded in the learned representations. Although the scope of previous analyses is extensive in acoustic, phonetic, and semantic perspectives, the physical grounding by speech production has not yet received full attention. To bridge this gap, we conduct a comprehensive analysis to link speech representations to articulatory trajectories measured by electromagnetic articulography (EMA). Our analysis is based on a linear probing approach where we measure articulatory score as an average correlation of linear mapping to EMA. We analyze a set of SSL models selected from the leaderboard of the SUPERB benchmark and perform further layer-wise analyses on two most successful models, Wav2Vec 2.0 and HuBERT. Surprisingly, representations from the recent speech SSL models are highly correlated with EMA traces (best: r = 0.81), and only 5 minutes are sufficient to train a linear model with high performance (r = 0.77). Our findings suggest that SSL models learn to align closely with continuous articulations, and provide a novel insight into speech SSL.


Articulation GAN: Unsupervised modeling of articulatory learning

arXiv.org Artificial Intelligence

Generative deep neural networks are widely used for speech synthesis, but most existing models directly generate waveforms or spectral outputs. Humans, however, produce speech by controlling articulators, which results in the production of speech sounds through physical properties of sound propagation. We introduce the Articulatory Generator to the Generative Adversarial Network paradigm, a new unsupervised generative model of speech production/synthesis. The Articulatory Generator more closely mimics human speech production by learning to generate articulatory representations (electromagnetic articulography or EMA) in a fully unsupervised manner. A separate pre-trained physical model (ema2wav) then transforms the generated EMA representations to speech waveforms, which get sent to the Discriminator for evaluation. Articulatory analysis suggests that the network learns to control articulators in a similar manner to humans during speech production. Acoustic analysis of the outputs suggests that the network learns to generate words that are both present and absent in the training distribution. We additionally discuss implications of articulatory representations for cognitive models of human language and speech technology in general.


PACS: A Dataset for Physical Audiovisual CommonSense Reasoning

arXiv.org Artificial Intelligence

In order for AI to be safely deployed in real-world scenarios such as hospitals, schools, and the workplace, it must be able to robustly reason about the physical world. Fundamental to this reasoning is physical common sense: understanding the physical properties and affordances of available objects, how they can be manipulated, and how they interact with other objects. Physical commonsense reasoning is fundamentally a multi-sensory task, since physical properties are manifested through multiple modalities - two of them being vision and acoustics. Our paper takes a step towards real-world physical commonsense reasoning by contributing PACS: the first audiovisual benchmark annotated for physical commonsense attributes. PACS contains 13,400 question-answer pairs, involving 1,377 unique physical commonsense questions and 1,526 videos. Our dataset provides new opportunities to advance the research field of physical reasoning by bringing audio as a core component of this multimodal problem. Using PACS, we evaluate multiple state-of-the-art models on our new challenging task. While some models show promising results (70% accuracy), they all fall short of human performance (95% accuracy). We conclude the paper by demonstrating the importance of multimodal reasoning and providing possible avenues for future research.


MultiBench: Multiscale Benchmarks for Multimodal Representation Learning

arXiv.org Artificial Intelligence

Learning multimodal representations involves integrating information from multiple heterogeneous sources of data. It is a challenging yet crucial area with numerous real-world applications in multimedia, affective computing, robotics, finance, human-computer interaction, and healthcare. Unfortunately, multimodal research has seen limited resources to study (1) generalization across domains and modalities, (2) complexity during training and inference, and (3) robustness to noisy and missing modalities. In order to accelerate progress towards understudied modalities and tasks while ensuring real-world robustness, we release MultiBench, a systematic and unified large-scale benchmark spanning 15 datasets, 10 modalities, 20 prediction tasks, and 6 research areas. MultiBench provides an automated end-to-end machine learning pipeline that simplifies and standardizes data loading, experimental setup, and model evaluation. To enable holistic evaluation, MultiBench offers a comprehensive methodology to assess (1) generalization, (2) time and space complexity, and (3) modality robustness. MultiBench introduces impactful challenges for future research, including scalability to large-scale multimodal datasets and robustness to realistic imperfections. To accompany this benchmark, we also provide a standardized implementation of 20 core approaches in multimodal learning. Simply applying methods proposed in different research areas can improve the state-of-the-art performance on 9/15 datasets. Therefore, MultiBench presents a milestone in unifying disjoint efforts in multimodal research and paves the way towards a better understanding of the capabilities and limitations of multimodal models, all the while ensuring ease of use, accessibility, and reproducibility. MultiBench, our standardized code, and leaderboards are publicly available, will be regularly updated, and welcomes inputs from the community.


Cross-Modal Generalization: Learning in Low Resource Modalities via Meta-Alignment

arXiv.org Artificial Intelligence

The natural world is abundant with concepts expressed via visual, acoustic, tactile, and linguistic modalities. Much of the existing progress in multimodal learning, however, focuses primarily on problems where the same set of modalities are present at train and test time, which makes learning in low-resource modalities particularly difficult. In this work, we propose algorithms for cross-modal generalization: a learning paradigm to train a model that can (1) quickly perform new tasks in a target modality (i.e. meta-learning) and (2) doing so while being trained on a different source modality. We study a key research question: how can we ensure generalization across modalities despite using separate encoders for different source and target modalities? Our solution is based on meta-alignment, a novel method to align representation spaces using strongly and weakly paired cross-modal data while ensuring quick generalization to new tasks across different modalities. We study this problem on 3 classification tasks: text to image, image to audio, and text to speech. Our results demonstrate strong performance even when the new target modality has only a few (1-10) labeled samples and in the presence of noisy labels, a scenario particularly prevalent in low-resource modalities.


LEAF: A Benchmark for Federated Settings

arXiv.org Machine Learning

Modern federated networks, such as those comprised of wearable devices, mobile phones, or autonomous vehicles, generate massive amounts of data each day. This wealth of data can help to learn models that can improve the user experience on each device. However, learning in federated settings presents new challenges at all stages of the machine learning pipeline. As the machine learning community begins to tackle these challenges, we are at a critical time to ensure that developments made in this area are grounded in real-world assumptions. To this end, we propose LEAF, a modular benchmarking framework for learning in federated settings. LEAF includes a suite of open-source federated datasets, a rigorous evaluation framework, and a set of reference implementations, all geared towards capturing the obstacles and intricacies of practical federated environments.