Goto

Collaborating Authors

 Wu, Peng


HVI: A New Color Space for Low-light Image Enhancement

arXiv.org Artificial Intelligence

Low-Light Image Enhancement (LLIE) is a crucial computer vision task that aims to restore detailed visual information from corrupted low-light images. Many existing LLIE methods are based on standard RGB (sRGB) space, which often produce color bias and brightness artifacts due to inherent high color sensitivity in sRGB. While converting the images using Hue, Saturation and Value (HSV) color space helps resolve the brightness issue, it introduces significant red and black noise artifacts. To address this issue, we propose a new color space for LLIE, namely Horizontal/Vertical-Intensity (HVI), defined by polarized HS maps and learnable intensity. The former enforces small distances for red coordinates to remove the red artifacts, while the latter compresses the low-light regions to remove the black artifacts. To fully leverage the chromatic and intensity information, a novel Color and Intensity Decoupling Network (CIDNet) is further introduced to learn accurate photometric mapping function under different lighting conditions in the HVI space. Comprehensive results from benchmark and ablation experiments show that the proposed HVI color space with CIDNet outperforms the state-of-the-art methods on 10 datasets. The code is available at https://github.com/Fediory/HVI-CIDNet.


Learning Counterfactual Outcomes Under Rank Preservation

arXiv.org Machine Learning

Counterfactual inference aims to estimate the counterfactual outcome at the individual level given knowledge of an observed treatment and the factual outcome, with broad applications in fields such as epidemiology, econometrics, and management science. Previous methods rely on a known structural causal model (SCM) or assume the homogeneity of the exogenous variable and strict monotonicity between the outcome and exogenous variable. In this paper, we propose a principled approach for identifying and estimating the counterfactual outcome. We first introduce a simple and intuitive rank preservation assumption to identify the counterfactual outcome without relying on a known structural causal model. Building on this, we propose a novel ideal loss for theoretically unbiased learning of the counterfactual outcome and further develop a kernel-based estimator for its empirical estimation. Our theoretical analysis shows that the rank preservation assumption is not stronger than the homogeneity and strict monotonicity assumptions, and shows that the proposed ideal loss is convex, and the proposed estimator is unbiased. Extensive semi-synthetic and real-world experiments are conducted to demonstrate the effectiveness of the proposed method.


Optimal Policy Adaptation under Covariate Shift

arXiv.org Artificial Intelligence

Transfer learning of prediction models has been extensively studied, while the corresponding policy learning approaches are rarely discussed. In this paper, we propose principled approaches for learning the optimal policy in the target domain by leveraging two datasets: one with full information from the source domain and the other from the target domain with only covariates. First, under the setting of covariate shift, we formulate the problem from a perspective of causality and present the identifiability assumptions for the reward induced by a given policy. Then, we derive the efficient influence function and the semiparametric efficiency bound for the reward. Based on this, we construct a doubly robust and semiparametric efficient estimator for the reward and then learn the optimal policy by optimizing the estimated reward. Moreover, we theoretically analyze the bias and the generalization error bound for the learned policy. Furthermore, in the presence of both covariate and concept shifts, we propose a novel sensitivity analysis method to evaluate the robustness of the proposed policy learning approach. Extensive experiments demonstrate that the approach not only estimates the reward more accurately but also yields a policy that closely approximates the theoretically optimal policy.


Epinet for Content Cold Start

arXiv.org Artificial Intelligence

The exploding popularity of online content and its user base poses an evermore challenging matching problem for modern recommendation systems. Unlike other frontiers of machine learning such as natural language, recommendation systems are responsible for collecting their own data. Simply exploiting current knowledge can lead to pernicious feedback loops but naive exploration can detract from user experience and lead to reduced engagement. This exploration-exploitation trade-off is exemplified in the classic multi-armed bandit problem for which algorithms such as upper confidence bounds (UCB) and Thompson sampling (TS) demonstrate effective performance. However, there have been many challenges to scaling these approaches to settings which do not exhibit a conjugate prior structure. Recent scalable approaches to uncertainty quantification via epinets have enabled efficient approximations of Thompson sampling even when the learning model is a complex neural network. In this paper, we demonstrate the first application of epinets to an online recommendation system. Our experiments demonstrate improvements in both user traffic and engagement efficiency on the Facebook Reels online video platform.


A Bayesian Framework for Clustered Federated Learning

arXiv.org Machine Learning

One of the main challenges of federated learning (FL) is handling non-independent and identically distributed (non-IID) client data, which may occur in practice due to unbalanced datasets and use of different data sources across clients. Knowledge sharing and model personalization are key strategies for addressing this issue. Clustered federated learning is a class of FL methods that groups clients that observe similarly distributed data into clusters, such that every client is typically associated with one data distribution and participates in training a model for that distribution along their cluster peers. In this paper, we present a unified Bayesian framework for clustered FL which associates clients to clusters. Then we propose several practical algorithms to handle the, otherwise growing, data associations in a way that trades off performance and computational complexity. This work provides insights on client-cluster associations and enables client knowledge sharing in new ways. The proposed framework circumvents the need for unique client-cluster associations, which is seen to increase the performance of the resulting models in a variety of experiments.


Unsupervised feature selection algorithm framework based on neighborhood interval disturbance fusion

arXiv.org Artificial Intelligence

Feature selection technology is a key technology of data dimensionality reduction. Becauseof the lack of label information of collected data samples, unsupervised feature selection has attracted more attention. The universality and stability of many unsupervised feature selection algorithms are very low and greatly affected by the dataset structure. For this reason, many researchers have been keen to improve the stability of the algorithm. This paper attempts to preprocess the data set and use an interval method to approximate the data set, experimentally verifying the advantages and disadvantages of the new interval data set. This paper deals with these data sets from the global perspective and proposes a new algorithm-unsupervised feature selection algorithm based on neighborhood interval disturbance fusion(NIDF). This method can realize the joint learning of the final score of the feature and the approximate data interval. By comparing with the original unsupervised feature selection methods and several existing feature selection frameworks, the superiority of the proposed model is verified.


Symmetry Nonnegative Matrix Factorization Algorithm Based on Self-paced Learning

arXiv.org Artificial Intelligence

A symmetric nonnegative matrix factorization algorithm based on self-paced learning was proposed to improve the clustering performance of the model. It could make the model better distinguish normal samples from abnormal samples in an error-driven way. A weight variable that could measure the degree of difficulty to all samples was assigned in this method, and the variable was constrained by adopting both hard-weighting and soft-weighting strategies to ensure the rationality of the model. Cluster analysis was carried out on multiple data sets such as images and texts, and the experimental results showed the effectiveness of the proposed algorithm.


Semi-supervised Regression Analysis with Model Misspecification and High-dimensional Data

arXiv.org Machine Learning

The accessibility of vast volumes of unlabeled data has sparked growing interest in semi-supervised learning (SSL) and covariate shift transfer learning (CSTL). In this paper, we present an inference framework for estimating regression coefficients in conditional mean models within both SSL and CSTL settings, while allowing for the misspecification of conditional mean models. We develop an augmented inverse probability weighted (AIPW) method, employing regularized calibrated estimators for both propensity score (PS) and outcome regression (OR) nuisance models, with PS and OR models being sequentially dependent. We show that when the PS model is correctly specified, the proposed estimator achieves consistency, asymptotic normality, and valid confidence intervals, even with possible OR model misspecification and high-dimensional data. Moreover, by suppressing detailed technical choices, we demonstrate that previous methods can be unified within our AIPW framework. Our theoretical findings are verified through extensive simulation studies and a real-world data application.


COOL: Comprehensive Knowledge Enhanced Prompt Learning for Domain Adaptive Few-shot Fake News Detection

arXiv.org Artificial Intelligence

Most Fake News Detection (FND) methods often struggle with data scarcity for emerging news domain. Recently, prompt learning based on Pre-trained Language Models (PLM) has emerged as a promising approach in domain adaptive few-shot learning, since it greatly reduces the need for labeled data by bridging the gap between pre-training and downstream task. Furthermore, external knowledge is also helpful in verifying emerging news, as emerging news often involves timely knowledge that may not be contained in the PLM's outdated prior knowledge. To this end, we propose COOL, a Comprehensive knOwledge enhanced prOmpt Learning method for domain adaptive few-shot FND. Specifically, we propose a comprehensive knowledge extraction module to extract both structured and unstructured knowledge that are positively or negatively correlated with news from external sources, and adopt an adversarial contrastive enhanced hybrid prompt learning strategy to model the domain-invariant news-knowledge interaction pattern for FND. Experimental results demonstrate the superiority of COOL over various state-of-the-arts.


Local Causal Structure Learning in the Presence of Latent Variables

arXiv.org Artificial Intelligence

Discovering causal relationships from observational data, particularly in the presence of latent variables, poses a challenging problem. While current local structure learning methods have proven effective and efficient when the focus lies solely on the local relationships of a target variable, they operate under the assumption of causal sufficiency. This assumption implies that all the common causes of the measured variables are observed, leaving no room for latent variables. Such a premise can be easily violated in various real-world applications, resulting in inaccurate structures that may adversely impact downstream tasks. In light of this, our paper delves into the primary investigation of locally identifying potential parents and children of a target from observational data that may include latent variables. Specifically, we harness the causal information from m-separation and V-structures to derive theoretical consistency results, effectively bridging the gap between global and local structure learning. Together with the newly developed stop rules, we present a principled method for determining whether a variable is a direct cause or effect of a target. Further, we theoretically demonstrate the correctness of our approach under the standard causal Markov and faithfulness conditions, with infinite samples. Experimental results on both synthetic and real-world data validate the effectiveness and efficiency of our approach.