Wu, Likang
Instruct-of-Reflection: Enhancing Large Language Models Iterative Reflection Capabilities via Dynamic-Meta Instruction
Liu, Liping, Zhang, Chunhong, Wu, Likang, Zhao, Chuang, Hu, Zheng, He, Ming, Fan, Jianping
Self-reflection for Large Language Models (LLMs) has gained significant attention. Existing approaches involve models iterating and improving their previous responses based on LLMs' internal reflection ability or external feedback. However, recent research has raised doubts about whether intrinsic self-correction without external feedback may even degrade performance. Based on our empirical evidence, we find that current static reflection methods may lead to redundant, drift, and stubborn issues. To mitigate this, we introduce Instruct-of-Reflection (IoRT), a novel and general reflection framework that leverages dynamic-meta instruction to enhance the iterative reflection capability of LLMs. Specifically, we propose the instructor driven by the meta-thoughts and self-consistency classifier, generates various instructions, including refresh, stop, and select, to guide the next reflection iteration. Our experiments demonstrate that IoRT achieves an average improvement of 10.1% over established baselines in mathematical and commonsense reasoning tasks, highlighting its efficacy and applicability.
LANE: Logic Alignment of Non-tuning Large Language Models and Online Recommendation Systems for Explainable Reason Generation
Zhao, Hongke, Zheng, Songming, Wu, Likang, Yu, Bowen, Wang, Jing
The explainability of recommendation systems is crucial for enhancing user trust and satisfaction. Leveraging large language models (LLMs) offers new opportunities for comprehensive recommendation logic generation. However, in existing related studies, fine-tuning LLM models for recommendation tasks incurs high computational costs and alignment issues with existing systems, limiting the application potential of proven proprietary/closed-source LLM models, such as GPT-4. In this work, our proposed effective strategy LANE aligns LLMs with online recommendation systems without additional LLMs tuning, reducing costs and improving explainability. This innovative approach addresses key challenges in integrating language models with recommendation systems while fully utilizing the capabilities of powerful proprietary models. Specifically, our strategy operates through several key components: semantic embedding, user multi-preference extraction using zero-shot prompting, semantic alignment, and explainable recommendation generation using Chain of Thought (CoT) prompting. By embedding item titles instead of IDs and utilizing multi-head attention mechanisms, our approach aligns the semantic features of user preferences with those of candidate items, ensuring coherent and user-aligned recommendations. Sufficient experimental results including performance comparison, questionnaire voting, and visualization cases prove that our method can not only ensure recommendation performance, but also provide easy-to-understand and reasonable recommendation logic.
Enhancing Collaborative Semantics of Language Model-Driven Recommendations via Graph-Aware Learning
Guan, Zhong, Wu, Likang, Zhao, Hongke, He, Ming, Fan, Jianpin
Large Language Models (LLMs) are increasingly prominent in the recommendation systems domain. Existing studies usually utilize in-context learning or supervised fine-tuning on task-specific data to align LLMs into recommendations. However, the substantial bias in semantic spaces between language processing tasks and recommendation tasks poses a nonnegligible challenge. Specifically, without the adequate capturing ability of collaborative information, existing modeling paradigms struggle to capture behavior patterns within community groups, leading to LLMs' ineffectiveness in discerning implicit interaction semantic in recommendation scenarios. To address this, we consider enhancing the learning capability of language model-driven recommendation models for structured data, specifically by utilizing interaction graphs rich in collaborative semantics. We propose a Graph-Aware Learning for Language Model-Driven Recommendations (GAL-Rec). GAL-Rec enhances the understanding of user-item collaborative semantics by imitating the intent of Graph Neural Networks (GNNs) to aggregate multi-hop information, thereby fully exploiting the substantial learning capacity of LLMs to independently address the complex graphs in the recommendation system. Sufficient experimental results on three real-world datasets demonstrate that GAL-Rec significantly enhances the comprehension of collaborative semantics, and improves recommendation performance.
LangTopo: Aligning Language Descriptions of Graphs with Tokenized Topological Modeling
Guan, Zhong, Zhao, Hongke, Wu, Likang, He, Ming, Fan, Jianpin
Recently, large language models (LLMs) have been widely researched in the field of graph machine learning due to their outstanding abilities in language comprehension and learning. However, the significant gap between natural language tasks and topological structure modeling poses a nonnegligible challenge. Specifically, since natural language descriptions are not sufficient for LLMs to understand and process graph-structured data, fine-tuned LLMs perform even worse than some traditional GNN models on graph tasks, lacking inherent modeling capabilities for graph structures. Existing research overly emphasizes LLMs' understanding of semantic information captured by external models, while inadequately exploring graph topological structure modeling, thereby overlooking the genuine capabilities that LLMs lack. Consequently, in this paper, we introduce a new framework, Lang-Topo, which aligns graph structure modeling with natural language understanding at the token level. LangTopo quantifies the graph structure modeling capabilities of GNNs and LLMs by constructing a codebook for the graph modality and performs consistency maximization. This process aligns the text description of LLM with the topological modeling of GNN, allowing LLM to learn the ability of GNN to capture graph structures, enabling LLM to handle graph-structured data independently. We demonstrate the effectiveness of our proposed method on multiple datasets.
Dr.E Bridges Graphs with Large Language Models through Words
Liu, Zipeng, Wu, Likang, He, Ming, Guan, Zhong, Zhao, Hongke, Feng, Nan
Significant efforts have been directed toward integrating powerful Large Language Models (LLMs) with diverse modalities, particularly focusing on the fusion of vision, language, and audio data. However, the graph-structured data, inherently rich in structural and domain-specific knowledge, have not yet been gracefully adapted to LLMs. Existing methods either describe the graph with raw text, suffering the loss of graph structural information, or feed Graph Neural Network (GNN) embeddings directly into LLM at the cost of losing semantic representation. To bridge this gap, we introduce an innovative, end-to-end modality-aligning framework, equipped with a pretrained Dual-Residual Vector Quantized-Variational AutoEncoder (Dr.E). This framework is specifically designed to facilitate token-level alignment with LLMs, enabling an effective translation of the intrinsic `language' of graphs into comprehensible natural language. Our experimental evaluations on standard GNN node classification tasks demonstrate competitive performance against other state-of-the-art approaches. Additionally, our framework ensures interpretability, efficiency, and robustness, with its effectiveness further validated under both fine-tuning and few-shot settings. This study marks the first successful endeavor to achieve token-level alignment between GNNs and LLMs.
From a Social Cognitive Perspective: Context-aware Visual Social Relationship Recognition
Wu, Shiwei, Zhang, Chao, Chen, Joya, Xu, Tong, Wu, Likang, Hu, Yao, Chen, Enhong
People's social relationships are often manifested through their surroundings, with certain objects or interactions acting as symbols for specific relationships, e.g., wedding rings, roses, hugs, or holding hands. This brings unique challenges to recognizing social relationships, requiring understanding and capturing the essence of these contexts from visual appearances. However, current methods of social relationship understanding rely on the basic classification paradigm of detected persons and objects, which fails to understand the comprehensive context and often overlooks decisive social factors, especially subtle visual cues. To highlight the social-aware context and intricate details, we propose a novel approach that recognizes \textbf{Con}textual \textbf{So}cial \textbf{R}elationships (\textbf{ConSoR}) from a social cognitive perspective. Specifically, to incorporate social-aware semantics, we build a lightweight adapter upon the frozen CLIP to learn social concepts via our novel multi-modal side adapter tuning mechanism. Further, we construct social-aware descriptive language prompts (e.g., scene, activity, objects, emotions) with social relationships for each image, and then compel ConSoR to concentrate more intensively on the decisive visual social factors via visual-linguistic contrasting. Impressively, ConSoR outperforms previous methods with a 12.2\% gain on the People-in-Social-Context (PISC) dataset and a 9.8\% increase on the People-in-Photo-Album (PIPA) benchmark. Furthermore, we observe that ConSoR excels at finding critical visual evidence to reveal social relationships.
A Cross-View Hierarchical Graph Learning Hypernetwork for Skill Demand-Supply Joint Prediction
Chao, Wenshuo, Qiu, Zhaopeng, Wu, Likang, Guo, Zhuoning, Zheng, Zhi, Zhu, Hengshu, Liu, Hao
The rapidly changing landscape of technology and industries leads to dynamic skill requirements, making it crucial for employees and employers to anticipate such shifts to maintain a competitive edge in the labor market. Existing efforts in this area either rely on domain-expert knowledge or regarding skill evolution as a simplified time series forecasting problem. However, both approaches overlook the sophisticated relationships among different skills and the inner-connection between skill demand and supply variations. In this paper, we propose a Cross-view Hierarchical Graph learning Hypernetwork (CHGH) framework for joint skill demand-supply prediction. Specifically, CHGH is an encoder-decoder network consisting of i) a cross-view graph encoder to capture the interconnection between skill demand and supply, ii) a hierarchical graph encoder to model the co-evolution of skills from a cluster-wise perspective, and iii) a conditional hyper-decoder to jointly predict demand and supply variations by incorporating historical demand-supply gaps. Extensive experiments on three real-world datasets demonstrate the superiority of the proposed framework compared to seven baselines and the effectiveness of the three modules.
Exploring Large Language Model for Graph Data Understanding in Online Job Recommendations
Wu, Likang, Qiu, Zhaopeng, Zheng, Zhi, Zhu, Hengshu, Chen, Enhong
Large Language Models (LLMs) have revolutionized natural language processing tasks, demonstrating their exceptional capabilities in various domains. However, their potential for behavior graph understanding in job recommendations remains largely unexplored. This paper focuses on unveiling the capability of large language models in understanding behavior graphs and leveraging this understanding to enhance recommendations in online recruitment, including the promotion of out-of-distribution (OOD) application. We present a novel framework that harnesses the rich contextual information and semantic representations provided by large language models to analyze behavior graphs and uncover underlying patterns and relationships. Specifically, we propose a meta-path prompt constructor that leverages LLM recommender to understand behavior graphs for the first time and design a corresponding path augmentation module to alleviate the prompt bias introduced by path-based sequence input. By leveraging this capability, our framework enables personalized and accurate job recommendations for individual users. We evaluate the effectiveness of our approach on a comprehensive dataset and demonstrate its ability to improve the relevance and quality of recommended quality. This research not only sheds light on the untapped potential of large language models but also provides valuable insights for developing advanced recommendation systems in the recruitment market. The findings contribute to the growing field of natural language processing and offer practical implications for enhancing job search experiences. We release the code at https://github.com/WLiK/GLRec.
APGL4SR: A Generic Framework with Adaptive and Personalized Global Collaborative Information in Sequential Recommendation
Yin, Mingjia, Wang, Hao, Xu, Xiang, Wu, Likang, Zhao, Sirui, Guo, Wei, Liu, Yong, Tang, Ruiming, Lian, Defu, Chen, Enhong
The sequential recommendation system has been widely studied for its promising effectiveness in capturing dynamic preferences buried in users' sequential behaviors. Despite the considerable achievements, existing methods usually focus on intra-sequence modeling while overlooking exploiting global collaborative information by inter-sequence modeling, resulting in inferior recommendation performance. Therefore, previous works attempt to tackle this problem with a global collaborative item graph constructed by pre-defined rules. However, these methods neglect two crucial properties when capturing global collaborative information, i.e., adaptiveness and personalization, yielding sub-optimal user representations. To this end, we propose a graph-driven framework, named Adaptive and Personalized Graph Learning for Sequential Recommendation (APGL4SR), that incorporates adaptive and personalized global collaborative information into sequential recommendation systems. Specifically, we first learn an adaptive global graph among all items and capture global collaborative information with it in a self-supervised fashion, whose computational burden can be further alleviated by the proposed SVD-based accelerator. Furthermore, based on the graph, we propose to extract and utilize personalized item correlations in the form of relative positional encoding, which is a highly compatible manner of personalizing the utilization of global collaborative information. Finally, the entire framework is optimized in a multi-task learning paradigm, thus each part of APGL4SR can be mutually reinforced. As a generic framework, APGL4SR can outperform other baselines with significant margins. The code is available at https://github.com/Graph-Team/APGL4SR.
A Survey on Large Language Models for Recommendation
Wu, Likang, Zheng, Zhi, Qiu, Zhaopeng, Wang, Hao, Gu, Hongchao, Shen, Tingjia, Qin, Chuan, Zhu, Chen, Zhu, Hengshu, Liu, Qi, Xiong, Hui, Chen, Enhong
Large Language Models (LLMs) have emerged as powerful tools in the field of Natural Language Processing (NLP) and have recently gained significant attention in the domain of Recommendation Systems (RS). These models, trained on massive amounts of data using self-supervised learning, have demonstrated remarkable success in learning universal representations and have the potential to enhance various aspects of recommendation systems by some effective transfer techniques such as fine-tuning and prompt tuning, and so on. The crucial aspect of harnessing the power of language models in enhancing recommendation quality is the utilization of their high-quality representations of textual features and their extensive coverage of external knowledge to establish correlations between items and users. To provide a comprehensive understanding of the existing LLM-based recommendation systems, this survey presents a taxonomy that categorizes these models into two major paradigms, respectively Discriminative LLM for Recommendation (DLLM4Rec) and Generative LLM for Recommendation (GLLM4Rec), with the latter being systematically sorted out for the first time. Furthermore, we systematically review and analyze existing LLM-based recommendation systems within each paradigm, providing insights into their methodologies, techniques, and performance. Additionally, we identify key challenges and several valuable findings to provide researchers and practitioners with inspiration. We have also created a GitHub repository to index relevant papers on LLMs for recommendation, https://github.com/WLiK/LLM4Rec.