Wu, Junxian
LLM4GNAS: A Large Language Model Based Toolkit for Graph Neural Architecture Search
Gao, Yang, Yang, Hong, Chen, Yizhi, Wu, Junxian, Zhang, Peng, Wang, Haishuai
Graph Neural Architecture Search (GNAS) facilitates the automatic design of Graph Neural Networks (GNNs) tailored to specific downstream graph learning tasks. However, existing GNAS approaches often require manual adaptation to new graph search spaces, necessitating substantial code optimization and domain-specific knowledge. To address this challenge, we present LLM4GNAS, a toolkit for GNAS that leverages the generative capabilities of Large Language Models (LLMs). LLM4GNAS includes an algorithm library for graph neural architecture search algorithms based on LLMs, enabling the adaptation of GNAS methods to new search spaces through the modification of LLM prompts. This approach reduces the need for manual intervention in algorithm adaptation and code modification. The LLM4GNAS toolkit is extensible and robust, incorporating LLM-enhanced graph feature engineering, LLM-enhanced graph neural architecture search, and LLM-enhanced hyperparameter optimization. Experimental results indicate that LLM4GNAS outperforms existing GNAS methods on tasks involving both homogeneous and heterogeneous graphs.
GVMGen: A General Video-to-Music Generation Model with Hierarchical Attentions
Zuo, Heda, You, Weitao, Wu, Junxian, Ren, Shihong, Chen, Pei, Zhou, Mingxu, Lu, Yujia, Sun, Lingyun
Composing music for video is essential yet challenging, leading to a growing interest in automating music generation for video applications. Existing approaches often struggle to achieve robust music-video correspondence and generative diversity, primarily due to inadequate feature alignment methods and insufficient datasets. In this study, we present General Video-to-Music Generation model (GVMGen), designed for generating high-related music to the video input. Our model employs hierarchical attentions to extract and align video features with music in both spatial and temporal dimensions, ensuring the preservation of pertinent features while minimizing redundancy. Remarkably, our method is versatile, capable of generating multi-style music from different video inputs, even in zero-shot scenarios. We also propose an evaluation model along with two novel objective metrics for assessing video-music alignment. Additionally, we have compiled a large-scale dataset comprising diverse types of video-music pairs. Experimental results demonstrate that GVMGen surpasses previous models in terms of music-video correspondence, generative diversity, and application universality.
SpineCLUE: Automatic Vertebrae Identification Using Contrastive Learning and Uncertainty Estimation
Zhang, Sheng, Chen, Minheng, Wu, Junxian, Zhang, Ziyue, Li, Tonglong, Xue, Cheng, Kong, Youyong
Vertebrae identification in arbitrary fields-of-view plays a crucial role in diagnosing spine disease. Most spine CT contain only local regions, such as the neck, chest, and abdomen. Therefore, identification should not depend on specific vertebrae or a particular number of vertebrae being visible. Existing methods at the spine-level are unable to meet this challenge. In this paper, we propose a three-stage method to address the challenges in 3D CT vertebrae identification at vertebrae-level. By sequentially performing the tasks of vertebrae localization, segmentation, and identification, the anatomical prior information of the vertebrae is effectively utilized throughout the process. Specifically, we introduce a dual-factor density clustering algorithm to acquire localization information for individual vertebra, thereby facilitating subsequent segmentation and identification processes. In addition, to tackle the issue of interclass similarity and intra-class variability, we pre-train our identification network by using a supervised contrastive learning method. To further optimize the identification results, we estimated the uncertainty of the classification network and utilized the message fusion module to combine the uncertainty scores, while aggregating global information about the spine. Our method achieves state-of-the-art results on the VerSe19 and VerSe20 challenge benchmarks. Additionally, our approach demonstrates outstanding generalization performance on an collected dataset containing a wide range of abnormal cases.