Goto

Collaborating Authors

 Wu, Jianping


Towards Robust Multi-tab Website Fingerprinting

arXiv.org Artificial Intelligence

Website fingerprinting enables an eavesdropper to determine which websites a user is visiting over an encrypted connection. State-of-the-art website fingerprinting (WF) attacks have demonstrated effectiveness even against Tor-protected network traffic. However, existing WF attacks have critical limitations on accurately identifying websites in multi-tab browsing sessions, where the holistic pattern of individual websites is no longer preserved, and the number of tabs opened by a client is unknown a priori. In this paper, we propose ARES, a novel WF framework natively designed for multi-tab WF attacks. ARES formulates the multi-tab attack as a multi-label classification problem and solves it using the novel Transformer-based models. Specifically, ARES extracts local patterns based on multi-level traffic aggregation features and utilizes the improved self-attention mechanism to analyze the correlations between these local patterns, effectively identifying websites. We implement a prototype of ARES and extensively evaluate its effectiveness using our large-scale datasets collected over multiple months. The experimental results illustrate that ARES achieves optimal performance in several realistic scenarios. Further, ARES remains robust even against various WF defenses.


Act Better by Timing: A timing-Aware Reinforcement Learning for Autonomous Driving

arXiv.org Artificial Intelligence

Coping with intensively interactive scenarios is one of the significant challenges in the development of autonomous driving. Reinforcement learning (RL) offers an ideal solution for such scenarios through its self-evolution mechanism via interaction with the environment. However, the lack of sufficient safety mechanisms in common RL leads to the fact that agent often find it difficult to interact well in highly dynamic environment and may collide in pursuit of short-term rewards. Much of the existing safe RL methods require environment modeling to generate reliable safety boundaries that constrain agent behavior. Nevertheless, acquiring such safety boundaries is not always feasible in dynamic environments. Inspired by the driver's behavior of acting when uncertainty is minimal, this study introduces the concept of action timing to replace explicit safety boundary modeling. We define "actor" as an agent to decide optimal action at each step. By imaging the actor take opportunity to act as a timing-dependent gradual process, the other agent called "timing taker" can evaluate the optimal action execution time, and relate the optimal timing to each action moment as a dynamic safety factor to constrain the actor's action. In the experiment involving a complex, unsignaled intersection interaction, this framework achieved superior safety performance compared to all benchmark models.


Brain-on-Switch: Towards Advanced Intelligent Network Data Plane via NN-Driven Traffic Analysis at Line-Speed

arXiv.org Artificial Intelligence

The emerging programmable networks sparked significant research on Intelligent Network Data Plane (INDP), which achieves learning-based traffic analysis at line-speed. Prior art in INDP focus on deploying tree/forest models on the data plane. We observe a fundamental limitation in tree-based INDP approaches: although it is possible to represent even larger tree/forest tables on the data plane, the flow features that are computable on the data plane are fundamentally limited by hardware constraints. In this paper, we present BoS to push the boundaries of INDP by enabling Neural Network (NN) driven traffic analysis at line-speed. Many types of NNs (such as Recurrent Neural Network (RNN), and transformers) that are designed to work with sequential data have advantages over tree-based models, because they can take raw network data as input without complex feature computations on the fly. However, the challenge is significant: the recurrent computation scheme used in RNN inference is fundamentally different from the match-action paradigm used on the network data plane. BoS addresses this challenge by (i) designing a novel data plane friendly RNN architecture that can execute unlimited RNN time steps with limited data plane stages, effectively achieving line-speed RNN inference; and (ii) complementing the on-switch RNN model with an off-switch transformer-based traffic analysis module to further boost the overall performance. We implement a prototype of BoS using a P4 programmable switch as our data plane, and extensively evaluate it over multiple traffic analysis tasks. The results show that BoS outperforms state-of-the-art in both analysis accuracy and scalability.


D-HAL: Distributed Hierarchical Adversarial Learning for Multi-Agent Interaction in Autonomous Intersection Management

arXiv.org Artificial Intelligence

Autonomous Intersection Management (AIM) provides a signal-free intersection scheduling paradigm for Connected Autonomous Vehicles (CAVs). Distributed learning method has emerged as an attractive branch of AIM research. Compared with centralized AIM, distributed AIM can be deployed to CAVs at a lower cost, and compared with rule-based and optimization-based method, learning-based method can treat various complicated real-time intersection scenarios more flexibly. Deep reinforcement learning (DRL) is the mainstream approach in distributed learning to address AIM problems. However, the large-scale simultaneous interactive decision of multiple agents and the rapid changes of environment caused by interactions pose challenges for DRL, making its reward curve oscillating and hard to converge, and ultimately leading to a compromise in safety and computing efficiency. For this, we propose a non-RL learning framework, called Distributed Hierarchical Adversarial Learning (D-HAL). The framework includes an actor network that generates the actions of each CAV at each step. The immediate discriminator evaluates the interaction performance of the actor network at the current step, while the final discriminator makes the final evaluation of the overall trajectory from a series of interactions. In this framework, the long-term outcome of the behavior no longer motivates the actor network in terms of discounted rewards, but rather through a designed adversarial loss function with discriminative labels. The proposed model is evaluated at a four-way-six-lane intersection, and outperforms several state-of-the-art methods on ensuring safety and reducing travel time.


COOR-PLT: A hierarchical control model for coordinating adaptive platoons of connected and autonomous vehicles at signal-free intersections based on deep reinforcement learning

arXiv.org Artificial Intelligence

Platooning and coordination are two implementation strategies that are frequently proposed for traffic control of connected and autonomous vehicles (CAVs) at signal-free intersections instead of using conventional traffic signals. However, few studies have attempted to integrate both strategies to better facilitate the CAV control at signal-free intersections. To this end, this study proposes a hierarchical control model, named COOR-PLT, to coordinate adaptive CAV platoons at a signal-free intersection based on deep reinforcement learning (DRL). COOR-PLT has a two-layer framework. The first layer uses a centralized control strategy to form adaptive platoons. The optimal size of each platoon is determined by considering multiple objectives (i.e., efficiency, fairness and energy saving). The second layer employs a decentralized control strategy to coordinate multiple platoons passing through the intersection. Each platoon is labeled with coordinated status or independent status, upon which its passing priority is determined. As an efficient DRL algorithm, Deep Q-network (DQN) is adopted to determine platoon sizes and passing priorities respectively in the two layers. The model is validated and examined on the simulator Simulation of Urban Mobility (SUMO). The simulation results demonstrate that the model is able to: (1) achieve satisfactory convergence performances; (2) adaptively determine platoon size in response to varying traffic conditions; and (3) completely avoid deadlocks at the intersection. By comparison with other control methods, the model manifests its superiority of adopting adaptive platooning and DRL-based coordination strategies. Also, the model outperforms several state-of-the-art methods on reducing travel time and fuel consumption in different traffic conditions.


Cyclic Graph Attentive Match Encoder (CGAME): A Novel Neural Network For OD Estimation

arXiv.org Artificial Intelligence

Origin-Destination Estimation plays an important role in traffic management and traffic simulation in the era of Intelligent Transportation System (ITS). Nevertheless, previous model-based models face the under-determined challenge, thus desperate demand for additional assumptions and extra data exists. Deep learning provides an ideal data-based method for connecting inputs and results by probabilistic distribution transformation. While relevant researches of applying deep learning into OD estimation are limited due to the challenges lying in data transformation across representation space, especially from dynamic spatial-temporal space to heterogeneous graph in this issue. To address it, we propose Cyclic Graph Attentive Matching Encoder (C-GAME) based on a novel Graph Matcher with double-layer attention mechanism. It realizes effective information exchange in underlying feature space and establishes coupling relationship across spaces. The proposed model achieves state-of-the-art results in experiments, and offers a novel framework for inference task across spaces in prospective employments.


BML: A High-performance, Low-cost Gradient Synchronization Algorithm for DML Training

Neural Information Processing Systems

In distributed machine learning (DML), the network performance between machines significantly impacts the speed of iterative training. In this paper we propose BML, a new gradient synchronization algorithm with higher network performance and lower network cost than the current practice. BML runs on BCube network, instead of using the traditional Fat-Tree topology. BML algorithm is designed in such a way that, compared to the parameter server (PS) algorithm on a Fat-Tree network connecting the same number of server machines, BML achieves theoretically 1/k of the gradient synchronization time, with k/5 of switches (the typical number of k is 2∼4). Experiments of LeNet-5 and VGG-19 benchmarks on a testbed with 9 dual-GPU servers show that, BML reduces the job completion time of DML training by up to 56.4%.


BML: A High-performance, Low-cost Gradient Synchronization Algorithm for DML Training

Neural Information Processing Systems

In distributed machine learning (DML), the network performance between machines significantly impacts the speed of iterative training. In this paper we propose BML, a new gradient synchronization algorithm with higher network performance and lower network cost than the current practice. BML runs on BCube network, instead of using the traditional Fat-Tree topology. BML algorithm is designed in such a way that, compared to the parameter server (PS) algorithm on a Fat-Tree network connecting the same number of server machines, BML achieves theoretically 1/k of the gradient synchronization time, with k/5 of switches (the typical number of k is 2∼4). Experiments of LeNet-5 and VGG-19 benchmarks on a testbed with 9 dual-GPU servers show that, BML reduces the job completion time of DML training by up to 56.4%.


Discovery of Important Crossroads in Road Network using Massive Taxi Trajectories

arXiv.org Artificial Intelligence

A major problem in road network analysis is discovery of important crossroads, which can provide useful information for transport planning. However, none of existing approaches addresses the problem of identifying network-wide important crossroads in real road network. In this paper, we propose a novel data-driven based approach named CRRank to rank important crossroads. Our key innovation is that we model the trip network reflecting real travel demands with a tripartite graph, instead of solely analysis on the topology of road network. To compute the importance scores of crossroads accurately, we propose a HITS-like ranking algorithm, in which a procedure of score propagation on our tripartite graph is performed. We conduct experiments on CRRank using a real-world dataset of taxi trajectories. Experiments verify the utility of CRRank.