Wu, Ji
LiDAR-enhanced 3D Gaussian Splatting Mapping
Shen, Jian, Yu, Huai, Wu, Ji, Yang, Wen, Xia, Gui-Song
This paper introduces LiGSM, a novel LiDAR-enhanced 3D Gaussian Splatting (3DGS) mapping framework that improves the accuracy and robustness of 3D scene mapping by integrating LiDAR data. LiGSM constructs joint loss from images and LiDAR point clouds to estimate the poses and optimize their extrinsic parameters, enabling dynamic adaptation to variations in sensor alignment. Furthermore, it leverages LiDAR point clouds to initialize 3DGS, providing a denser and more reliable starting points compared to sparse SfM points. In scene rendering, the framework augments standard image-based supervision with depth maps generated from LiDAR projections, ensuring an accurate scene representation in both geometry and photometry. Experiments on public and self-collected datasets demonstrate that LiGSM outperforms comparative methods in pose tracking and scene rendering.
MKE-Coder: Multi-Axial Knowledge with Evidence Verification in ICD Coding for Chinese EMRs
You, Xinxin, Liu, Xien, Yang, Xue, Wang, Ziyi, Wu, Ji
The task of automatically coding the International Classification of Diseases (ICD) in the medical field has been well-established and has received much attention. Automatic coding of the ICD in the medical field has been successful in English but faces challenges when dealing with Chinese electronic medical records (EMRs). The first issue lies in the difficulty of extracting disease code-related information from Chinese EMRs, primarily due to the concise writing style and specific internal structure of the EMRs. The second problem is that previous methods have failed to leverage the disease-based multi-axial knowledge and lack of association with the corresponding clinical evidence. This paper introduces a novel framework called MKE-Coder: Multi-axial Knowledge with Evidence verification in ICD coding for Chinese EMRs. Initially, we identify candidate codes for the diagnosis and categorize each of them into knowledge under four coding axes.Subsequently, we retrieve corresponding clinical evidence from the comprehensive content of EMRs and filter credible evidence through a scoring model. Finally, to ensure the validity of the candidate code, we propose an inference module based on the masked language modeling strategy. This module verifies that all the axis knowledge associated with the candidate code is supported by evidence and provides recommendations accordingly. To evaluate the performance of our framework, we conduct experiments using a large-scale Chinese EMR dataset collected from various hospitals. The experimental results demonstrate that MKE-Coder exhibits significant superiority in the task of automatic ICD coding based on Chinese EMRs. In the practical evaluation of our method within simulated real coding scenarios, it has been demonstrated that our approach significantly aids coders in enhancing both their coding accuracy and speed.
Connector-S: A Survey of Connectors in Multi-modal Large Language Models
Zhu, Xun, Zhang, Zheng, Chen, Xi, Shi, Yiming, Li, Miao, Wu, Ji
With the rapid advancements in multi-modal large language models (MLLMs), connectors play a pivotal role in bridging diverse modalities and enhancing model performance. However, the design and evolution of connectors have not been comprehensively analyzed, leaving gaps in understanding how these components function and hindering the development of more powerful connectors. In this survey, we systematically review the current progress of connectors in MLLMs and present a structured taxonomy that categorizes connectors into atomic operations (mapping, compression, mixture of experts) and holistic designs (multi-layer, multi-encoder, multi-modal scenarios), highlighting their technical contributions and advancements. Furthermore, we discuss several promising research frontiers and challenges, including high-resolution input, dynamic compression, guide information selection, combination strategy, and interpretability. This survey is intended to serve as a foundational reference and a clear roadmap for researchers, providing valuable insights into the design and optimization of next-generation connectors to enhance the performance and adaptability of MLLMs.
MIH-TCCT: Mitigating Inconsistent Hallucinations in LLMs via Event-Driven Text-Code Cyclic Training
You, Xinxin, Liu, Xien, Sun, Qixin, Zhang, Huan, Zhou, Kaiyin, Liu, Shaohui, Hu, GuoPing, Wang, ShiJin, Liu, Si, Wu, Ji
Recent methodologies utilizing synthetic datasets have aimed to address inconsistent hallucinations in large language models (LLMs); however,these approaches are primarily tailored to specific tasks, limiting their generalizability. Inspired by the strong performance of code-trained models in logic-intensive domains, we propose a novel framework that leverages event-based text to generate corresponding code and employs cyclic training to transfer the logical consistency of code to natural language effectively. Our method significantly reduces inconsistent hallucinations across three leading LLMs and two categories of natural language tasks while maintaining overall performance. This framework effectively alleviates hallucinations without necessitating adaptation to downstream tasks, demonstrating generality and providing new perspectives to tackle the challenge of inconsistent hallucinations.
Data Augmentation Techniques for Chinese Disease Name Normalization
Cui, Wenqian, Fu, Xiangling, Liu, Shaohui, Gu, Mingjun, Liu, Xien, Wu, Ji, King, Irwin
Disease name normalization is an important task in the medical domain. It classifies disease names written in various formats into standardized names, serving as a fundamental component in smart healthcare systems for various disease-related functions. Nevertheless, the most significant obstacle to existing disease name normalization systems is the severe shortage of training data. Consequently, we present a novel data augmentation approach that includes a series of data augmentation techniques and some supporting modules to help mitigate the problem. Through extensive experimentation, we illustrate that our proposed approach exhibits significant performance improvements across various baseline models and training objectives, particularly in scenarios with limited training data
QuadricsReg: Large-Scale Point Cloud Registration using Quadric Primitives
Wu, Ji, Yu, Huai, Han, Shu, Cai, Xi-Meng, Wang, Ming-Feng, Yang, Wen, Xia, Gui-Song
In the realm of large-scale point cloud registration, designing a compact symbolic representation is crucial for efficiently processing vast amounts of data, ensuring registration robustness against significant viewpoint variations and occlusions. This paper introduces a novel point cloud registration method, i.e., QuadricsReg, which leverages concise quadrics primitives to represent scenes and utilizes their geometric characteristics to establish correspondences for 6-DoF transformation estimation. As a symbolic feature, the quadric representation fully captures the primary geometric characteristics of scenes, which can efficiently handle the complexity of large-scale point clouds. The intrinsic characteristics of quadrics, such as types and scales, are employed to initialize correspondences. Then we build a multi-level compatibility graph set to find the correspondences using the maximum clique on the geometric consistency between quadrics. Finally, we estimate the 6-DoF transformation using the quadric correspondences, which is further optimized based on the quadric degeneracy-aware distance in a factor graph, ensuring high registration accuracy and robustness against degenerate structures. We test on 5 public datasets and the self-collected heterogeneous dataset across different LiDAR sensors and robot platforms. The exceptional registration success rates and minimal registration errors demonstrate the effectiveness of QuadricsReg in large-scale point cloud registration scenarios. Furthermore, the real-world registration testing on our self-collected heterogeneous dataset shows the robustness and generalization ability of QuadricsReg on different LiDAR sensors and robot platforms. The codes and demos will be released at \url{https://levenberg.github.io/QuadricsReg}.
Uni-Med: A Unified Medical Generalist Foundation Model For Multi-Task Learning Via Connector-MoE
Zhu, Xun, Hu, Ying, Mo, Fanbin, Li, Miao, Wu, Ji
Multi-modal large language models (MLLMs) have shown impressive capabilities as a general-purpose interface for various visual and linguistic tasks. However, building a unified MLLM for multi-task learning in the medical field remains a thorny challenge. To mitigate the tug-of-war problem of multi-modal multi-task optimization in MLLMs, recent advances primarily focus on improving the LLM components, while neglecting the connector that bridges the gap between modalities. In this paper, we introduce Uni-Med, a novel medical generalist foundation model which consists of a universal visual feature extraction module, a connector mixture-of-experts (CMoE) module, and an LLM. Benefiting from the proposed CMoE that leverages a well-designed router with a mixture of projection experts at the connector, Uni-Med achieves efficient solution to the tug-of-war problem and can perform six different medical tasks including question answering, visual question answering, report generation, referring expression comprehension, referring expression generation and image classification. To the best of our knowledge, Uni-Med is the first effort to tackle multi-task interference at the connector in MLLMs. Extensive ablation experiments validate the effectiveness of introducing CMoE under any configuration, with up to an average 8% performance gains. We further provide interpretation analysis of the tug-of-war problem from the perspective of gradient optimization and parameter statistics. Compared to previous state-of-the-art medical MLLMs, Uni-Med achieves competitive or superior evaluation metrics on diverse tasks. Code and resources are available at https://github.com/tsinghua-msiip/Uni-Med.
Reliable and diverse evaluation of LLM medical knowledge mastery
Zhou, Yuxuan, Liu, Xien, Ning, Chen, Zhang, Xiao, Wu, Ji
Mastering medical knowledge is crucial for medical-specific LLMs. However, despite the existence of medical benchmarks like MedQA, a unified framework that fully leverages existing knowledge bases to evaluate LLMs' mastery of medical knowledge is still lacking. In the study, we propose a novel framework PretexEval that dynamically generates reliable and diverse test samples to evaluate LLMs for any given medical knowledge base. We notice that test samples produced directly from knowledge bases by templates or LLMs may introduce factual errors and also lack diversity. To address these issues, we introduce a novel schema into our proposed evaluation framework that employs predicate equivalence transformations to produce a series of variants for any given medical knowledge point. Finally, these produced predicate variants are converted into textual language, resulting in a series of reliable and diverse test samples to evaluate whether LLMs fully master the given medical factual knowledge point. Here, we use our proposed framework to systematically investigate the mastery of medical factual knowledge of 12 well-known LLMs, based on two knowledge bases that are crucial for clinical diagnosis and treatment. The evaluation results illustrate that current LLMs still exhibit significant deficiencies in fully mastering medical knowledge, despite achieving considerable success on some famous public benchmarks. These new findings provide valuable insights for developing medical-specific LLMs, highlighting that current LLMs urgently need to strengthen their comprehensive and in-depth mastery of medical knowledge before being applied to real-world medical scenarios.
Enhancing elusive clues in knowledge learning by contrasting attention of language models
Gao, Jian, Zhang, Xiao, Wu, Ji, Li, Miao
Causal language models acquire vast amount of knowledge from general text corpus during pretraining, but the efficiency of knowledge learning is known to be unsatisfactory, especially when learning from knowledge-dense and small-sized corpora. The deficiency can come from long-distance dependencies which are hard to capture by language models, and overfitting to co-occurrence patterns and distracting clues in the training text. To address these issues, the paper proposes a method to enhance knowledge learning during language model pretraining, by enhancing elusive but important clues in text discovered by the language model themselves. We found that larger language models pay more attention to non-obvious but important clues, which are often overlooked by smaller language models. Therefore, we can identify these clues by contrasting the attention weights of large and small language models. We use the identified clues as a guide to perform token-dropout data augmentation on the training text, and observed a significant boost in both small and large models' performance in fact memorization. This shows that the behavior contrast between more and less-performant language models contains important clues for knowledge learning, and it can be ``amplified" for a straight-forward improvement in knowledge learning efficiency.
Co-occurrence is not Factual Association in Language Models
Zhang, Xiao, Li, Miao, Wu, Ji
Pretrained language models can encode a large amount of knowledge and utilize it for various reasoning tasks, yet they can still struggle to learn novel factual knowledge effectively from finetuning on limited textual demonstrations. In this work, we show that the reason for this deficiency is that language models are biased to learn word co-occurrence statistics instead of true factual associations. We identify the differences between two forms of knowledge representation in language models: knowledge in the form of co-occurrence statistics is encoded in the middle layers of the transformer model and does not generalize well to reasoning scenarios beyond simple question answering, while true factual associations are encoded in the lower layers and can be freely utilized in various reasoning tasks. Based on these observations, we propose two strategies to improve the learning of factual associations in language models. We show that training on text with implicit rather than explicit factual associations can force the model to learn factual associations instead of co-occurrence statistics, significantly improving the generalization of newly learned knowledge. We also propose a simple training method to actively forget the learned co-occurrence statistics, which unblocks and enhances the learning of factual associations when training on plain narrative text. On both synthetic and real-world corpora, the two proposed strategies improve the generalization of the knowledge learned during finetuning to reasoning scenarios such as indirect and multi-hop question answering.