Wu, Hongqiu
BriLLM: Brain-inspired Large Language Model
Zhao, Hai, Wu, Hongqiu, Yang, Dongjie, Zou, Anni, Hong, Jiale
This paper reports the first brain-inspired large language model (BriLLM). This is a non-Transformer, non-GPT, non-traditional machine learning input-output controlled generative language model. The model is based on the Signal Fully-connected flowing (SiFu) definition on the directed graph in terms of the neural network, and has the interpretability of all nodes on the graph of the whole model, instead of the traditional machine learning model that only has limited interpretability at the input and output ends. In the language model scenario, the token is defined as a node in the graph. A randomly shaped or user-defined signal flow flows between nodes on the principle of "least resistance" along paths. The next token or node to be predicted or generated is the target of the signal flow. As a language model, BriLLM theoretically supports infinitely long $n$-gram models when the model size is independent of the input and predicted length of the model. The model's working signal flow provides the possibility of recall activation and innate multi-modal support similar to the cognitive patterns of the human brain. At present, we released the first BriLLM version in Chinese, with 4000 tokens, 32-dimensional node width, 16-token long sequence prediction ability, and language model prediction performance comparable to GPT-1. More computing power will help us explore the infinite possibilities depicted above.
Towards Enhanced Immersion and Agency for LLM-based Interactive Drama
Wu, Hongqiu, Wu, Weiqi, Xu, Tianyang, Zhang, Jiameng, Zhao, Hai
LLM-based Interactive Drama is a novel AI-based dialogue scenario, where the user (i.e. the player) plays the role of a character in the story, has conversations with characters played by LLM agents, and experiences an unfolding story. This paper begins with understanding interactive drama from two aspects: Immersion, the player's feeling of being present in the story, and Agency, the player's ability to influence the story world. Both are crucial to creating an enjoyable interactive experience, while they have been underexplored in previous work. To enhance these two aspects, we first propose Playwriting-guided Generation, a novel method that helps LLMs craft dramatic stories with substantially improved structures and narrative quality. Additionally, we introduce Plot-based Reflection for LLM agents to refine their reactions to align with the player's intentions. Our evaluation relies on human judgment to assess the gains of our methods in terms of immersion and agency.
Instruction-Driven Game Engine: A Poker Case Study
Wu, Hongqiu, Liu, Xingyuan, Wang, Yan, Zhao, Hai
The Instruction-Driven Game Engine (IDGE) project aims to democratize game development by enabling a large language model (LLM) to follow free-form game descriptions and generate game-play processes. The IDGE allows users to create games simply by natural language instructions, which significantly lowers the barrier for game development. We approach the learning process for IDGEs as a Next State Prediction task, wherein the model autoregressively predicts the game states given player actions. The computation of game states must be precise; otherwise, slight errors could corrupt the game-play experience. This is challenging because of the gap between stability and diversity. To address this, we train the IDGE in a curriculum manner that progressively increases its exposure to complex scenarios. Our initial progress lies in developing an IDGE for Poker, which not only supports a wide range of poker variants but also allows for highly individualized new poker games through natural language inputs. This work lays the groundwork for future advancements in transforming how games are created and played.
From Role-Play to Drama-Interaction: An LLM Solution
Wu, Weiqi, Wu, Hongqiu, Jiang, Lai, Liu, Xingyuan, Hong, Jiale, Zhao, Hai, Zhang, Min
Drama is a form of storytelling inspired by human creativity, proceeding with a predefined storyline, carrying emotions and thoughts. This paper introduces \emph{LLM-based interactive drama}, which endows traditional drama with an unprecedented immersion, where a person is allowed to walk into it and interact with the characters and scenes. We define this new artistic genre by 6 essential elements-plot, character, thought, diction, spectacle and interaction-and study the entire pipeline to forge a backbone \emph{drama LLM} to drive the playing process, which is challenged by limited drama resources, uncontrollable narrative development, and complicated instruction following. We propose \emph{Narrative Chain} to offer finer control over the narrative progression during interaction with players; \emph{Auto-Drama} to synthesize drama scripts given arbitrary stories; \emph{Sparse Instruction Tuning} to allow the model to follow sophisticated instructions. We manually craft 3 scripts, \emph{Detective Conan}, \emph{Harry Potter}, \emph{Romeo and Juliet}, and design a 5-dimension principle to evaluate the drama LLM comprehensively.
Instruction-Driven Game Engines on Large Language Models
Wu, Hongqiu, Wang, Y., Liu, Xingyuan, Zhao, Hai, Zhang, Min
The Instruction-Driven Game Engine (IDGE) project aims to democratize game development by enabling a large language model (LLM) to follow free-form game rules and autonomously generate game-play processes. The IDGE allows users to create games by issuing simple natural language instructions, which significantly lowers the barrier for game development. We approach the learning process for IDGEs as a Next State Prediction task, wherein the model autoregressively predicts in-game states given player actions. It is a challenging task because the computation of in-game states must be precise; otherwise, slight errors could disrupt the game-play. To address this, we train the IDGE in a curriculum manner that progressively increases the model's exposure to complex scenarios. Our initial progress lies in developing an IDGE for Poker, a universally cherished card game. The engine we've designed not only supports a wide range of poker variants but also allows for high customization of rules through natural language inputs. Furthermore, it also favors rapid prototyping of new games from minimal samples, proposing an innovative paradigm in game development that relies on minimal prompt and data engineering. This work lays the groundwork for future advancements in instruction-driven game creation, potentially transforming how games are designed and played.
Unveiling Vulnerability of Self-Attention
Liong, Khai Jiet, Wu, Hongqiu, Zhao, Hai
Pre-trained language models (PLMs) are shown to be vulnerable to minor word changes, which poses a big threat to real-world systems. While previous studies directly focus on manipulating word inputs, they are limited by their means of generating adversarial samples, lacking generalization to versatile real-world attack. This paper studies the basic structure of transformer-based PLMs, the self-attention (SA) mechanism. (1) We propose a powerful perturbation technique \textit{HackAttend}, which perturbs the attention scores within the SA matrices via meticulously crafted attention masks. We show that state-of-the-art PLMs fall into heavy vulnerability that minor attention perturbations $(1\%)$ can produce a very high attack success rate $(98\%)$. Our paper expands the conventional text attack of word perturbations to more general structural perturbations. (2) We introduce \textit{S-Attend}, a novel smoothing technique that effectively makes SA robust via structural perturbations. We empirically demonstrate that this simple yet effective technique achieves robust performance on par with adversarial training when facing various text attackers. Code is publicly available at \url{github.com/liongkj/HackAttend}.
Empower Nested Boolean Logic via Self-Supervised Curriculum Learning
Wu, Hongqiu, Liu, Linfeng, Zhao, Hai, Zhang, Min
Beyond the great cognitive powers showcased by language models, it is crucial to scrutinize whether their reasoning capabilities stem from strong generalization or merely exposure to relevant data. As opposed to constructing increasingly complex logic, this paper probes into the boolean logic, the root capability of a logical reasoner. We find that any pre-trained language models even including large language models only behave like a random selector in the face of multi-nested boolean logic, a task that humans can handle with ease. To empower language models with this fundamental capability, this paper proposes a new self-supervised learning method \textit{Curriculum Logical Reasoning} (\textsc{Clr}), where we augment the training data with nested boolean logic chain step-by-step, and program the training from simpler logical patterns gradually to harder ones. This new training paradigm allows language models to effectively generalize to much harder and longer-hop logic, which can hardly be learned through naive training. Furthermore, we show that boolean logic is a great foundation for improving the subsequent general logical tasks.
Chinese Spelling Correction as Rephrasing Language Model
Liu, Linfeng, Wu, Hongqiu, Zhao, Hai
This paper studies Chinese Spelling Correction (CSC), which aims to detect and correct the potential spelling errors in a given sentence. Current state-of-the-art methods regard CSC as a sequence tagging task and fine-tune BERT-based models on sentence pairs. However, we note a critical flaw in the process of tagging one character to another, that the correction is excessively conditioned on the error. This is opposite from human mindset, where individuals rephrase the complete sentence based on its semantics, rather than solely on the error patterns memorized before. Such a counter-intuitive learning process results in the bottleneck of generalizability and transferability of machine spelling correction. To address this, we propose Rephrasing Language Model (ReLM), where the model is trained to rephrase the entire sentence by infilling additional slots, instead of character-to-character tagging. This novel training paradigm achieves the new state-of-the-art results across fine-tuned and zero-shot CSC benchmarks, outperforming previous counterparts by a large margin. Our method also learns transferable language representation when CSC is jointly trained with other tasks.
Episodic Return Decomposition by Difference of Implicitly Assigned Sub-Trajectory Reward
Lin, Haoxin, Wu, Hongqiu, Zhang, Jiaji, Sun, Yihao, Ye, Junyin, Yu, Yang
Real-world decision-making problems are usually accompanied by delayed rewards, which affects the sample efficiency of Reinforcement Learning, especially in the extremely delayed case where the only feedback is the episodic reward obtained at the end of an episode. Episodic return decomposition is a promising way to deal with the episodic-reward setting. Several corresponding algorithms have shown remarkable effectiveness of the learned step-wise proxy rewards from return decomposition. However, these existing methods lack either attribution or representation capacity, leading to inefficient decomposition in the case of long-term episodes. In this paper, we propose a novel episodic return decomposition method called Diaster (Difference of implicitly assigned sub-trajectory reward). Diaster decomposes any episodic reward into credits of two divided sub-trajectories at any cut point, and the step-wise proxy rewards come from differences in expectation. We theoretically and empirically verify that the decomposed proxy reward function can guide the policy to be nearly optimal. Experimental results show that our method outperforms previous state-of-the-art methods in terms of both sample efficiency and performance.
Adversarial Counterfactual Environment Model Learning
Chen, Xiong-Hui, Yu, Yang, Zhu, Zheng-Mao, Yu, Zhihua, Chen, Zhenjun, Wang, Chenghe, Wu, Yinan, Wu, Hongqiu, Qin, Rong-Jun, Ding, Ruijin, Huang, Fangsheng
A good model for action-effect prediction, named environment model, is important to achieve sample-efficient decision-making policy learning in many domains like robot control, recommender systems, and patients' treatment selection. We can take unlimited trials with such a model to identify the appropriate actions so that the costs of queries in the real world can be saved. It requires the model to handle unseen data correctly, also called counterfactual data. However, standard data fitting techniques do not automatically achieve such generalization ability and commonly result in unreliable models. In this work, we introduce counterfactual-query risk minimization (CQRM) in model learning for generalizing to a counterfactual dataset queried by a specific target policy. Since the target policies can be various and unknown in policy learning, we propose an adversarial CQRM objective in which the model learns on counterfactual data queried by adversarial policies, and finally derive a tractable solution GALILEO. We also discover that adversarial CQRM is closely related to the adversarial model learning, explaining the effectiveness of the latter. We apply GALILEO in synthetic tasks and a real-world application. The results show that GALILEO makes accurate predictions on counterfactual data and thus significantly improves policies in real-world testing.