Wu, Haiping
Florence-VL: Enhancing Vision-Language Models with Generative Vision Encoder and Depth-Breadth Fusion
Chen, Jiuhai, Yang, Jianwei, Wu, Haiping, Li, Dianqi, Gao, Jianfeng, Zhou, Tianyi, Xiao, Bin
We present Florence-VL, a new family of multimodal large language models (MLLMs) with enriched visual representations produced by Florence-2, a generative vision foundation model. Unlike the widely used CLIP-style vision transformer trained by contrastive learning, Florence-2 can capture different levels and aspects of visual features, which are more versatile to be adapted to diverse downstream tasks. We propose a novel feature-fusion architecture and an innovative training recipe that effectively integrates Florence-2's visual features into pretrained LLMs, such as Phi 3.5 and LLama 3. In particular, we propose "depth-breath fusion (DBFusion)" to fuse the visual features extracted from different depths and under multiple prompts. Our model training is composed of end-to-end pretraining of the whole model followed by finetuning of the projection layer and the LLM, on a carefully designed recipe of diverse open-source datasets that include high-quality image captions and instruction-tuning pairs. Our quantitative analysis and visualization of Florence-VL's visual features show its advantages over popular vision encoders on vision-language alignment, where the enriched depth and breath play important roles. Florence-VL achieves significant improvements over existing state-of-the-art MLLMs across various multi-modal and vision-centric benchmarks covering general VQA, perception, hallucination, OCR, Chart, knowledge-intensive understanding, etc. To facilitate future research, our models and the complete training recipe are open-sourced. https://github.com/JiuhaiChen/Florence-VL
Phi-3 Technical Report: A Highly Capable Language Model Locally on Your Phone
Abdin, Marah, Jacobs, Sam Ade, Awan, Ammar Ahmad, Aneja, Jyoti, Awadallah, Ahmed, Awadalla, Hany, Bach, Nguyen, Bahree, Amit, Bakhtiari, Arash, Bao, Jianmin, Behl, Harkirat, Benhaim, Alon, Bilenko, Misha, Bjorck, Johan, Bubeck, Sébastien, Cai, Qin, Cai, Martin, Mendes, Caio César Teodoro, Chen, Weizhu, Chaudhary, Vishrav, Chen, Dong, Chen, Dongdong, Chen, Yen-Chun, Chen, Yi-Ling, Chopra, Parul, Dai, Xiyang, Del Giorno, Allie, de Rosa, Gustavo, Dixon, Matthew, Eldan, Ronen, Fragoso, Victor, Iter, Dan, Gao, Mei, Gao, Min, Gao, Jianfeng, Garg, Amit, Goswami, Abhishek, Gunasekar, Suriya, Haider, Emman, Hao, Junheng, Hewett, Russell J., Huynh, Jamie, Javaheripi, Mojan, Jin, Xin, Kauffmann, Piero, Karampatziakis, Nikos, Kim, Dongwoo, Khademi, Mahoud, Kurilenko, Lev, Lee, James R., Lee, Yin Tat, Li, Yuanzhi, Li, Yunsheng, Liang, Chen, Liden, Lars, Liu, Ce, Liu, Mengchen, Liu, Weishung, Lin, Eric, Lin, Zeqi, Luo, Chong, Madan, Piyush, Mazzola, Matt, Mitra, Arindam, Modi, Hardik, Nguyen, Anh, Norick, Brandon, Patra, Barun, Perez-Becker, Daniel, Portet, Thomas, Pryzant, Reid, Qin, Heyang, Radmilac, Marko, Rosset, Corby, Roy, Sambudha, Ruwase, Olatunji, Saarikivi, Olli, Saied, Amin, Salim, Adil, Santacroce, Michael, Shah, Shital, Shang, Ning, Sharma, Hiteshi, Shukla, Swadheen, Song, Xia, Tanaka, Masahiro, Tupini, Andrea, Wang, Xin, Wang, Lijuan, Wang, Chunyu, Wang, Yu, Ward, Rachel, Wang, Guanhua, Witte, Philipp, Wu, Haiping, Wyatt, Michael, Xiao, Bin, Xu, Can, Xu, Jiahang, Xu, Weijian, Yadav, Sonali, Yang, Fan, Yang, Jianwei, Yang, Ziyi, Yang, Yifan, Yu, Donghan, Yuan, Lu, Zhang, Chengruidong, Zhang, Cyril, Zhang, Jianwen, Zhang, Li Lyna, Zhang, Yi, Zhang, Yue, Zhang, Yunan, Zhou, Xiren
We introduce phi-3-mini, a 3.8 billion parameter language model trained on 3.3 trillion tokens, whose overall performance, as measured by both academic benchmarks and internal testing, rivals that of models such as Mixtral 8x7B and GPT-3.5 (e.g., phi-3-mini achieves 69% on MMLU and 8.38 on MT-bench), despite being small enough to be deployed on a phone. The innovation lies entirely in our dataset for training, a scaled-up version of the one used for phi-2, composed of heavily filtered publicly available web data and synthetic data. The model is also further aligned for robustness, safety, and chat format. We also provide some initial parameter-scaling results with a 7B and 14B models trained for 4.8T tokens, called phi-3-small and phi-3-medium, both significantly more capable than phi-3-mini (e.g., respectively 75% and 78% on MMLU, and 8.7 and 8.9 on MT-bench). Moreover, we also introduce phi-3-vision, a 4.2 billion parameter model based on phi-3-mini with strong reasoning capabilities for image and text prompts.