Goto

Collaborating Authors

 Wu, Feiyang


Inverse Reinforcement Learning with Switching Rewards and History Dependency for Characterizing Animal Behaviors

arXiv.org Artificial Intelligence

Traditional approaches to studying decision-making in neuroscience focus on simplified behavioral tasks where animals perform repetitive, stereotyped actions to receive explicit rewards. While informative, these methods constrain our understanding of decision-making to short timescale behaviors driven by explicit goals. In natural environments, animals exhibit more complex, long-term behaviors driven by intrinsic motivations that are often unobservable. Recent works in time-varying inverse reinforcement learning (IRL) aim to capture shifting motivations in long-term, freely moving behaviors. However, a crucial challenge remains: animals make decisions based on their history, not just their current state. To address this, we introduce SWIRL (SWitching IRL), a novel framework that extends traditional IRL by incorporating time-varying, history-dependent reward functions. SWIRL models long behavioral sequences as transitions between short-term decision-making processes, each governed by a unique reward function. SWIRL incorporates biologically plausible history dependency to capture how past decisions and environmental contexts shape behavior, offering a more accurate description of animal decision-making. We apply SWIRL to simulated and real-world animal behavior datasets and show that it outperforms models lacking history dependency, both quantitatively and qualitatively. This work presents the first IRL model to incorporate history-dependent policies and rewards to advance our understanding of complex, naturalistic decision-making in animals. Historically, decision making in neuroscience has been studied using simplified assays where animals perform repetitive, stereotyped actions (such as licks, nose pokes, or lever presses) in response to sensory stimuli to obtain an explicit reward. While this approach has its advantages, it has limited our understanding of decision making to scenarios where animals are instructed to achieve an explicit goal over brief timescales, usually no more than tens of seconds.


Learn to Teach: Improve Sample Efficiency in Teacher-student Learning for Sim-to-Real Transfer

arXiv.org Artificial Intelligence

Simulation-to-reality (sim-to-real) transfer is a fundamental problem for robot learning. Domain Randomization, which adds randomization during training, is a powerful technique that effectively addresses the sim-to-real gap. However, the noise in observations makes learning significantly harder. Recently, studies have shown that employing a teacher-student learning paradigm can accelerate training in randomized environments. Learned with privileged information, a teacher agent can instruct the student agent to operate in noisy environments. However, this approach is often not sample efficient as the experience collected by the teacher is discarded completely when training the student, wasting information revealed by the environment. In this work, we extend the teacher-student learning paradigm by proposing a sample efficient learning framework termed Learn to Teach (L2T) that recycles experience collected by the teacher agent. We observe that the dynamics of the environments for both agents remain unchanged, and the state space of the teacher is coupled with the observation space of the student. We show that a single-loop algorithm can train both the teacher and student agents under both Reinforcement Learning and Inverse Reinforcement Learning contexts. We implement variants of our methods, conduct experiments on the MuJoCo benchmark, and apply our methods to the Cassie robot locomotion problem. Extensive experiments show that our method achieves competitive performance while only requiring environmental interaction with the teacher.


Infer and Adapt: Bipedal Locomotion Reward Learning from Demonstrations via Inverse Reinforcement Learning

arXiv.org Artificial Intelligence

Enabling bipedal walking robots to learn how to maneuver over highly uneven, dynamically changing terrains is challenging due to the complexity of robot dynamics and interacted environments. Recent advancements in learning from demonstrations have shown promising results for robot learning in complex environments. While imitation learning of expert policies has been well-explored, the study of learning expert reward functions is largely under-explored in legged locomotion. This paper brings state-of-the-art Inverse Reinforcement Learning (IRL) techniques to solving bipedal locomotion problems over complex terrains. We propose algorithms for learning expert reward functions, and we subsequently analyze the learned functions. Through nonlinear function approximation, we uncover meaningful insights into the expert's locomotion strategies. Furthermore, we empirically demonstrate that training a bipedal locomotion policy with the inferred reward functions enhances its walking performance on unseen terrains, highlighting the adaptability offered by reward learning.


Inverse Reinforcement Learning with the Average Reward Criterion

arXiv.org Artificial Intelligence

We study the problem of Inverse Reinforcement Learning (IRL) with an average-reward criterion. The goal is to recover an unknown policy and a reward function when the agent only has samples of states and actions from an experienced agent. Previous IRL methods assume that the expert is trained in a discounted environment, and the discount factor is known. This work alleviates this assumption by proposing an average-reward framework with efficient learning algorithms. We develop novel stochastic first-order methods to solve the IRL problem under the average-reward setting, which requires solving an Average-reward Markov Decision Process (AMDP) as a subproblem. To solve the subproblem, we develop a Stochastic Policy Mirror Descent (SPMD) method under general state and action spaces that needs $\mathcal{{O}}(1/\varepsilon)$ steps of gradient computation. Equipped with SPMD, we propose the Inverse Policy Mirror Descent (IPMD) method for solving the IRL problem with a $\mathcal{O}(1/\varepsilon^2)$ complexity. To the best of our knowledge, the aforementioned complexity results are new in IRL. Finally, we corroborate our analysis with numerical experiments using the MuJoCo benchmark and additional control tasks.