Goto

Collaborating Authors

 Wu, Fandi


dyAb: Flow Matching for Flexible Antibody Design with AlphaFold-driven Pre-binding Antigen

arXiv.org Artificial Intelligence

The development of therapeutic antibodies heavily relies on accurate predictions of how antigens will interact with antibodies. Existing computational methods in antibody design often overlook crucial conformational changes that antigens undergo during the binding process, significantly impacting the reliability of the resulting antibodies. To bridge this gap, we introduce dyAb, a flexible framework that incorporates AlphaFold2-driven predictions to model pre-binding antigen structures and specifically addresses the dynamic nature of antigen conformation changes. Our dyAb model leverages a unique combination of coarse-grained interface alignment and fine-grained flow matching techniques to simulate the interaction dynamics and structural evolution of the antigen-antibody complex, providing a realistic representation of the binding process. Extensive experiments show that dyAb significantly outperforms existing models in antibody design involving changing antigen conformations. These results highlight dyAb's potential to streamline the design process for therapeutic antibodies, promising more efficient development cycles and improved outcomes in clinical applications.


A Survey of Geometric Graph Neural Networks: Data Structures, Models and Applications

arXiv.org Artificial Intelligence

Geometric graph is a special kind of graph with geometric features, which is vital to model many scientific problems. Unlike generic graphs, geometric graphs often exhibit physical symmetries of translations, rotations, and reflections, making them ineffectively processed by current Graph Neural Networks (GNNs). To tackle this issue, researchers proposed a variety of Geometric Graph Neural Networks equipped with invariant/equivariant properties to better characterize the geometry and topology of geometric graphs. Given the current progress in this field, it is imperative to conduct a comprehensive survey of data structures, models, and applications related to geometric GNNs. In this paper, based on the necessary but concise mathematical preliminaries, we provide a unified view of existing models from the geometric message passing perspective. Additionally, we summarize the applications as well as the related datasets to facilitate later research for methodology development and experimental evaluation. We also discuss the challenges and future potential directions of Geometric GNNs at the end of this survey.