Not enough data to create a plot.
Try a different view from the menu above.
Wu, Di
A robust three-way classifier with shadowed granular-balls based on justifiable granularity
Yang, Jie, Xiaodiao, Lingyun, Wang, Guoyin, Pedrycz, Witold, Xia, Shuyin, Zhang, Qinghua, Wu, Di
The granular-ball (GB)-based classifier introduced by Xia, exhibits adaptability in creating coarse-grained information granules for input, thereby enhancing its generality and flexibility. Nevertheless, the current GB-based classifiers rigidly assign a specific class label to each data instance and lacks of the necessary strategies to address uncertain instances. These far-fetched certain classification approachs toward uncertain instances may suffer considerable risks. To solve this problem, we construct a robust three-way classifier with shadowed GBs for uncertain data. Firstly, combine with information entropy, we propose an enhanced GB generation method with the principle of justifiable granularity. Subsequently, based on minimum uncertainty, a shadowed mapping is utilized to partition a GB into Core region, Important region and Unessential region. Based on the constructed shadowed GBs, we establish a three-way classifier to categorize data instances into certain classes and uncertain case. Finally, extensive comparative experiments are conducted with 2 three-way classifiers, 3 state-of-the-art GB-based classifiers, and 3 classical machine learning classifiers on 12 public benchmark datasets. The results show that our model demonstrates robustness in managing uncertain data and effectively mitigates classification risks. Furthermore, our model almost outperforms the other comparison methods in both effectiveness and efficiency.
How to Learn in a Noisy World? Self-Correcting the Real-World Data Noise on Machine Translation
Meng, Yan, Wu, Di, Monz, Christof
The massive amounts of web-mined parallel data contain large amounts of noise. Semantic misalignment, as the primary source of the noise, poses a challenge for training machine translation systems. In this paper, we first study the impact of real-world hard-to-detect misalignment noise by proposing a process to simulate the realistic misalignment controlled by semantic similarity. After quantitatively analyzing the impact of simulated misalignment on machine translation, we show the limited effectiveness of widely used pre-filters to improve the translation performance, underscoring the necessity of more fine-grained ways to handle data noise. By observing the increasing reliability of the model's self-knowledge for distinguishing misaligned and clean data at the token-level, we propose a self-correction approach which leverages the model's prediction distribution to revise the training supervision from the ground-truth data over training time. Through comprehensive experiments, we show that our self-correction method not only improves translation performance in the presence of simulated misalignment noise but also proves effective for real-world noisy web-mined datasets across eight translation tasks.
The Factuality Tax of Diversity-Intervened Text-to-Image Generation: Benchmark and Fact-Augmented Intervention
Wan, Yixin, Wu, Di, Wang, Haoran, Chang, Kai-Wei
Prompt-based "diversity interventions" are commonly adopted to improve the diversity of Text-to-Image (T2I) models depicting individuals with various racial or gender traits. However, will this strategy result in nonfactual demographic distribution, especially when generating real historical figures? In this work, we propose DemOgraphic FActualIty Representation (DoFaiR), a benchmark to systematically quantify the trade-off between using diversity interventions and preserving demographic factuality in T2I models. DoFaiR consists of 756 meticulously fact-checked test instances to reveal the factuality tax of various diversity prompts through an automated evidence-supported evaluation pipeline. Experiments on DoFaiR unveil that diversity-oriented instructions increase the number of different gender and racial groups in DALLE-3's generations at the cost of historically inaccurate demographic distributions. To resolve this issue, we propose Fact-Augmented Intervention (FAI), which instructs a Large Language Model (LLM) to reflect on verbalized or retrieved factual information about gender and racial compositions of generation subjects in history, and incorporate it into the generation context of T2I models. By orienting model generations using the reflected historical truths, FAI significantly improves the demographic factuality under diversity interventions while preserving diversity.
MetaKP: On-Demand Keyphrase Generation
Wu, Di, Shen, Xiaoxian, Chang, Kai-Wei
Traditional keyphrase prediction methods predict a single set of keyphrases per document, failing to cater to the diverse needs of users and downstream applications. To bridge the gap, we introduce on-demand keyphrase generation, a novel paradigm that requires keyphrases that conform to specific high-level goals or intents. For this task, we present MetaKP, a large-scale benchmark comprising four datasets, 7500 documents, and 3760 goals across news and biomedical domains with human-annotated keyphrases. Leveraging MetaKP, we design both supervised and unsupervised methods, including a multi-task fine-tuning approach and a self-consistency prompting method with large language models. The results highlight the challenges of supervised fine-tuning, whose performance is not robust to distribution shifts. By contrast, the proposed self-consistency prompting approach greatly improves the performance of large language models, enabling GPT-4o to achieve 0.548 SemF1, surpassing the performance of a fully fine-tuned BART-base model. Finally, we demonstrate the potential of our method to serve as a general NLP infrastructure, exemplified by its application in epidemic event detection from social media.
Synchronous Faithfulness Monitoring for Trustworthy Retrieval-Augmented Generation
Wu, Di, Gu, Jia-Chen, Yin, Fan, Peng, Nanyun, Chang, Kai-Wei
Retrieval-augmented language models (RALMs) have shown strong performance and wide applicability in knowledge-intensive tasks. However, there are significant trustworthiness concerns as RALMs are prone to generating unfaithful outputs, including baseless information or contradictions with the retrieved context. This paper proposes SynCheck, a lightweight monitor that leverages fine-grained decoding dynamics including sequence likelihood, uncertainty quantification, context influence, and semantic alignment to synchronously detect unfaithful sentences. By integrating efficiently measurable and complementary signals, SynCheck enables accurate and immediate feedback and intervention, achieving 0.85 AUROC in detecting faithfulness errors across six long-form retrieval-augmented generation tasks, improving prior best method by 4%. Leveraging SynCheck, we further introduce FOD, a faithfulness-oriented decoding algorithm guided by beam search for long-form retrieval-augmented generation. Empirical results demonstrate that FOD outperforms traditional strategies such as abstention, reranking, or contrastive decoding significantly in terms of faithfulness, achieving over 10% improvement across six datasets.
Repoformer: Selective Retrieval for Repository-Level Code Completion
Wu, Di, Ahmad, Wasi Uddin, Zhang, Dejiao, Ramanathan, Murali Krishna, Ma, Xiaofei
Recent advances in retrieval-augmented generation (RAG) have initiated a new era in repository-level code completion. However, the invariable use of retrieval in existing methods exposes issues in both efficiency and robustness, with a large proportion of the retrieved contexts proving unhelpful or harmful to code language models (code LMs). In this paper, we propose a selective RAG framework to avoid retrieval when unnecessary. To power this framework, we design a self-supervised learning approach to enable a code LM to accurately self-evaluate whether retrieval can improve its output quality and robustly leverage the potentially noisy retrieved contexts. Using this LM as both the selective RAG policy and the generation model, our framework achieves state-of-the-art repository-level code completion performance on diverse benchmarks including RepoEval, CrossCodeEval, and CrossCodeLongEval, a new long-form code completion benchmark. Meanwhile, our analyses show that selectively retrieving brings as much as 70% inference speedup in the online serving setting without harming the performance. We further demonstrate that our framework is able to accommodate different generation models, retrievers, and programming languages. These advancements position our framework as an important step towards more accurate and efficient repository-level code completion.
FuRL: Visual-Language Models as Fuzzy Rewards for Reinforcement Learning
Fu, Yuwei, Zhang, Haichao, Wu, Di, Xu, Wei, Boulet, Benoit
In this work, we investigate how to leverage pre-trained visual-language models (VLM) for online Reinforcement Learning (RL). In particular, we focus on sparse reward tasks with pre-defined textual task descriptions. We first identify the problem of reward misalignment when applying VLM as a reward in RL tasks. To address this issue, we introduce a lightweight fine-tuning method, named Fuzzy VLM reward-aided RL (FuRL), based on reward alignment and relay RL. Specifically, we enhance the performance of SAC/DrQ baseline agents on sparse reward tasks by fine-tuning VLM representations and using relay RL to avoid local minima. Extensive experiments on the Meta-world benchmark tasks demonstrate the efficacy of the proposed method. Code is available at: https://github.com/fuyw/FuRL.
VQDNA: Unleashing the Power of Vector Quantization for Multi-Species Genomic Sequence Modeling
Li, Siyuan, Wang, Zedong, Liu, Zicheng, Wu, Di, Tan, Cheng, Zheng, Jiangbin, Huang, Yufei, Li, Stan Z.
Similar to natural language models, pre-trained genome language models are proposed to capture the underlying intricacies within genomes with unsupervised sequence modeling. They have become essential tools for researchers and practitioners in biology. However, the hand-crafted tokenization policies used in these models may not encode the most discriminative patterns from the limited vocabulary of genomic data. In this paper, we introduce VQDNA, a general-purpose framework that renovates genome tokenization from the perspective of genome vocabulary learning. By leveraging vector-quantized codebooks as learnable vocabulary, VQDNA can adaptively tokenize genomes into pattern-aware embeddings in an end-to-end manner. To further push its limits, we propose Hierarchical Residual Quantization (HRQ), where varying scales of codebooks are designed in a hierarchy to enrich the genome vocabulary in a coarse-to-fine manner. Extensive experiments on 32 genome datasets demonstrate VQDNA's superiority and favorable parameter efficiency compared to existing genome language models. Notably, empirical analysis of SARS-CoV-2 mutations reveals the fine-grained pattern awareness and biological significance of learned HRQ vocabulary, highlighting its untapped potential for broader applications in genomics.
CityGPT: Towards Urban IoT Learning, Analysis and Interaction with Multi-Agent System
Guan, Qinghua, Ouyang, Jinhui, Wu, Di, Yu, Weiren
The spatiotemporal data generated by massive sensors in the Internet of Things (IoT) is extremely dynamic, heterogeneous, large scale and time-dependent. It poses great challenges (e.g. accuracy, reliability, and stability) in real-time analysis and decision making for different IoT applications. The complexity of IoT data prevents the common people from gaining a deeper understanding of it. Agentized systems help address the lack of data insight for the common people. We propose a generic framework, namely CityGPT, to facilitate the learning and analysis of IoT time series with an end-to-end paradigm. CityGPT employs three agents to accomplish the spatiotemporal analysis of IoT data. The requirement agent facilitates user inputs based on natural language. Then, the analysis tasks are decomposed into temporal and spatial analysis processes, completed by corresponding data analysis agents (temporal and spatial agents). Finally, the spatiotemporal fusion agent visualizes the system's analysis results by receiving analysis results from data analysis agents and invoking sub-visualization agents, and can provide corresponding textual descriptions based on user demands. To increase the insight for common people using our framework, we have agnentized the framework, facilitated by a large language model (LLM), to increase the data comprehensibility. Our evaluation results on real-world data with different time dependencies show that the CityGPT framework can guarantee robust performance in IoT computing.
Large Language Model (LLM) for Telecommunications: A Comprehensive Survey on Principles, Key Techniques, and Opportunities
Zhou, Hao, Hu, Chengming, Yuan, Ye, Cui, Yufei, Jin, Yili, Chen, Can, Wu, Haolun, Yuan, Dun, Jiang, Li, Wu, Di, Liu, Xue, Zhang, Charlie, Wang, Xianbin, Liu, Jiangchuan
Large language models (LLMs) have received considerable attention recently due to their outstanding comprehension and reasoning capabilities, leading to great progress in many fields. The advancement of LLM techniques also offers promising opportunities to automate many tasks in the telecommunication (telecom) field. After pre-training and fine-tuning, LLMs can perform diverse downstream tasks based on human instructions, paving the way to artificial general intelligence (AGI)-enabled 6G. Given the great potential of LLM technologies, this work aims to provide a comprehensive overview of LLM-enabled telecom networks. In particular, we first present LLM fundamentals, including model architecture, pre-training, fine-tuning, inference and utilization, model evaluation, and telecom deployment. Then, we introduce LLM-enabled key techniques and telecom applications in terms of generation, classification, optimization, and prediction problems. Specifically, the LLM-enabled generation applications include telecom domain knowledge, code, and network configuration generation. After that, the LLM-based classification applications involve network security, text, image, and traffic classification problems. Moreover, multiple LLM-enabled optimization techniques are introduced, such as automated reward function design for reinforcement learning and verbal reinforcement learning. Furthermore, for LLM-aided prediction problems, we discussed time-series prediction models and multi-modality prediction problems for telecom. Finally, we highlight the challenges and identify the future directions of LLM-enabled telecom networks.