Goto

Collaborating Authors

 Wu, Cong


\textsc{Perseus}: Tracing the Masterminds Behind Cryptocurrency Pump-and-Dump Schemes

arXiv.org Artificial Intelligence

Masterminds are entities organizing, coordinating, and orchestrating cryptocurrency pump-and-dump schemes, a form of trade-based manipulation undermining market integrity and causing financial losses for unwitting investors. Previous research detects pump-and-dump activities in the market, predicts the target cryptocurrency, and examines investors and \ac{osn} entities. However, these solutions do not address the root cause of the problem. There is a critical gap in identifying and tracing the masterminds involved in these schemes. In this research, we develop a detection system \textsc{Perseus}, which collects real-time data from the \acs{osn} and cryptocurrency markets. \textsc{Perseus} then constructs temporal attributed graphs that preserve the direction of information diffusion and the structure of the community while leveraging \ac{gnn} to identify the masterminds behind pump-and-dump activities. Our design of \textsc{Perseus} leads to higher F1 scores and precision than the \ac{sota} fraud detection method, achieving fast training and inferring speeds. Deployed in the real world from February 16 to October 9 2024, \textsc{Perseus} successfully detects $438$ masterminds who are efficient in the pump-and-dump information diffusion networks. \textsc{Perseus} provides regulators with an explanation of the risks of masterminds and oversight capabilities to mitigate the pump-and-dump schemes of cryptocurrency.


Rethinking Membership Inference Attacks Against Transfer Learning

arXiv.org Artificial Intelligence

Transfer learning, successful in knowledge translation across related tasks, faces a substantial privacy threat from membership inference attacks (MIAs). These attacks, despite posing significant risk to ML model's training data, remain limited-explored in transfer learning. The interaction between teacher and student models in transfer learning has not been thoroughly explored in MIAs, potentially resulting in an under-examined aspect of privacy vulnerabilities within transfer learning. In this paper, we propose a new MIA vector against transfer learning, to determine whether a specific data point was used to train the teacher model while only accessing the student model in a white-box setting. Our method delves into the intricate relationship between teacher and student models, analyzing the discrepancies in hidden layer representations between the student model and its shadow counterpart. These identified differences are then adeptly utilized to refine the shadow model's training process and to inform membership inference decisions effectively. Our method, evaluated across four datasets in diverse transfer learning tasks, reveals that even when an attacker only has access to the student model, the teacher model's training data remains susceptible to MIAs. We believe our work unveils the unexplored risk of membership inference in transfer learning.


Secure Resource Allocation via Constrained Deep Reinforcement Learning

arXiv.org Artificial Intelligence

The proliferation of Internet of Things (IoT) devices and the advent of 6G technologies have introduced computationally intensive tasks that often surpass the processing capabilities of user devices. Efficient and secure resource allocation in serverless multi-cloud edge computing environments is essential for supporting these demands and advancing distributed computing. However, existing solutions frequently struggle with the complexity of multi-cloud infrastructures, robust security integration, and effective application of traditional deep reinforcement learning (DRL) techniques under system constraints. To address these challenges, we present SARMTO, a novel framework that integrates an action-constrained DRL model. SARMTO dynamically balances resource allocation, task offloading, security, and performance by utilizing a Markov decision process formulation, an adaptive security mechanism, and sophisticated optimization techniques. Extensive simulations across varying scenarios, including different task loads, data sizes, and MEC capacities, show that SARMTO consistently outperforms five baseline approaches, achieving up to a 40% reduction in system costs and a 41.5% improvement in energy efficiency over state-of-the-art methods. These enhancements highlight SARMTO's potential to revolutionize resource management in intricate distributed computing environments, opening the door to more efficient and secure IoT and edge computing applications.


LEO-Split: A Semi-Supervised Split Learning Framework over LEO Satellite Networks

arXiv.org Artificial Intelligence

Recently, the increasing deployment of LEO satellite systems has enabled various space analytics (e.g., crop and climate monitoring), which heavily relies on the advancements in deep learning (DL). However, the intermittent connectivity between LEO satellites and ground station (GS) significantly hinders the timely transmission of raw data to GS for centralized learning, while the scaled-up DL models hamper distributed learning on resource-constrained LEO satellites. Though split learning (SL) can be a potential solution to these problems by partitioning a model and offloading primary training workload to GS, the labor-intensive labeling process remains an obstacle, with intermittent connectivity and data heterogeneity being other challenges. In this paper, we propose LEO-Split, a semi-supervised (SS) SL design tailored for satellite networks to combat these challenges. Leveraging SS learning to handle (labeled) data scarcity, we construct an auxiliary model to tackle the training failure of the satellite-GS non-contact time. Moreover, we propose a pseudo-labeling algorithm to rectify data imbalances across satellites. Lastly, an adaptive activation interpolation scheme is devised to prevent the overfitting of server-side sub-model training at GS. Extensive experiments with real-world LEO satellite traces (e.g., Starlink) demonstrate that our LEO-Split framework achieves superior performance compared to state-ofthe-art benchmarks.


HeteroSample: Meta-path Guided Sampling for Heterogeneous Graph Representation Learning

arXiv.org Artificial Intelligence

The rapid expansion of Internet of Things (IoT) has resulted in vast, heterogeneous graphs that capture complex interactions among devices, sensors, and systems. Efficient analysis of these graphs is critical for deriving insights in IoT scenarios such as smart cities, industrial IoT, and intelligent transportation systems. However, the scale and diversity of IoT-generated data present significant challenges, and existing methods often struggle with preserving the structural integrity and semantic richness of these complex graphs. Many current approaches fail to maintain the balance between computational efficiency and the quality of the insights generated, leading to potential loss of critical information necessary for accurate decision-making in IoT applications. We introduce HeteroSample, a novel sampling method designed to address these challenges by preserving the structural integrity, node and edge type distributions, and semantic patterns of IoT-related graphs. HeteroSample works by incorporating the novel top-leader selection, balanced neighborhood expansion, and meta-path guided sampling strategies. The key idea is to leverage the inherent heterogeneous structure and semantic relationships encoded by meta-paths to guide the sampling process. This approach ensures that the resulting subgraphs are representative of the original data while significantly reducing computational overhead. Extensive experiments demonstrate that HeteroSample outperforms state-of-the-art methods, achieving up to 15% higher F1 scores in tasks such as link prediction and node classification, while reducing runtime by 20%.These advantages make HeteroSample a transformative tool for scalable and accurate IoT applications, enabling more effective and efficient analysis of complex IoT systems, ultimately driving advancements in smart cities, industrial IoT, and beyond.


Adaptive Hyper-Graph Convolution Network for Skeleton-based Human Action Recognition with Virtual Connections

arXiv.org Artificial Intelligence

The shared topology of human skeletons motivated the recent investigation of graph convolutional network (GCN) solutions for action recognition. However, the existing GCNs rely on the binary connection of two neighbouring vertices (joints) formed by an edge (bone), overlooking the potential of constructing multi-vertex convolution structures. In this paper we address this oversight and explore the merits of a hyper-graph convolutional network (Hyper-GCN) to achieve the aggregation of rich semantic information conveyed by skeleton vertices. In particular, our Hyper-GCN adaptively optimises multi-scale hyper-graphs during training, revealing the action-driven multi-vertex relations. Besides, virtual connections are often designed to support efficient feature aggregation, implicitly extending the spectrum of dependencies within the skeleton. By injecting virtual connections into hyper-graphs, the semantic clues of diverse action categories can be highlighted. The results of experiments conducted on the NTU-60, NTU-120, and NW-UCLA datasets, demonstrate the merits of our Hyper-GCN, compared to the state-of-the-art methods. Specifically, we outperform the existing solutions on NTU-120, achieving 90.2\% and 91.4\% in terms of the top-1 recognition accuracy on X-Sub and X-Set.


CLAD: Robust Audio Deepfake Detection Against Manipulation Attacks with Contrastive Learning

arXiv.org Artificial Intelligence

The increasing prevalence of audio deepfakes poses significant security threats, necessitating robust detection methods. While existing detection systems exhibit promise, their robustness against malicious audio manipulations remains underexplored. To bridge the gap, we undertake the first comprehensive study of the susceptibility of the most widely adopted audio deepfake detectors to manipulation attacks. Surprisingly, even manipulations like volume control can significantly bypass detection without affecting human perception. To address this, we propose CLAD (Contrastive Learning-based Audio deepfake Detector) to enhance the robustness against manipulation attacks. The key idea is to incorporate contrastive learning to minimize the variations introduced by manipulations, therefore enhancing detection robustness. Additionally, we incorporate a length loss, aiming to improve the detection accuracy by clustering real audios more closely in the feature space. We comprehensively evaluated the most widely adopted audio deepfake detection models and our proposed CLAD against various manipulation attacks. The detection models exhibited vulnerabilities, with FAR rising to 36.69%, 31.23%, and 51.28% under volume control, fading, and noise injection, respectively. CLAD enhanced robustness, reducing the FAR to 0.81% under noise injection and consistently maintaining an FAR below 1.63% across all tests. Our source code and documentation are available in the artifact repository (https://github.com/CLAD23/CLAD).


On the Effectiveness of Distillation in Mitigating Backdoors in Pre-trained Encoder

arXiv.org Artificial Intelligence

In this paper, we study a defense against poisoned encoders in SSL called distillation, which is a defense used in supervised learning originally. Distillation aims to distill knowledge from a given model (a.k.a the teacher net) and transfer it to another (a.k.a the student net). Now, we use it to distill benign knowledge from poisoned pre-trained encoders and transfer it to a new encoder, resulting in a clean pre-trained encoder. In particular, we conduct an empirical study on the effectiveness and performance of distillation against poisoned encoders. Using two state-of-the-art backdoor attacks against pre-trained image encoders and four commonly used image classification datasets, our experimental results show that distillation can reduce attack success rate from 80.87% to 27.51% while suffering a 6.35% loss in accuracy. Moreover, we investigate the impact of three core components of distillation on performance: teacher net, student net, and distillation loss. By comparing 4 different teacher nets, 3 student nets, and 6 distillation losses, we find that fine-tuned teacher nets, warm-up-training-based student nets, and attention-based distillation loss perform best, respectively.


The Multi-Modal Video Reasoning and Analyzing Competition

arXiv.org Artificial Intelligence

In this paper, we introduce the Multi-Modal Video Reasoning and Analyzing Competition (MMVRAC) workshop in conjunction with ICCV 2021. This competition is composed of four different tracks, namely, video question answering, skeleton-based action recognition, fisheye video-based action recognition, and person re-identification, which are based on two datasets: SUTD-TrafficQA and UAV-Human. We summarize the top-performing methods submitted by the participants in this competition and show their results achieved in the competition.