Goto

Collaborating Authors

 Wu, Chih-Wei


Remastering Divide and Remaster: A Cinematic Audio Source Separation Dataset with Multilingual Support

arXiv.org Artificial Intelligence

Cinematic audio source separation (CASS) is a relatively new subtask of audio source separation, concerned with the separation of a mixture into the dialogue, music, and effects stems. To date, only one publicly available dataset exists for CASS, that is, the Divide and Remaster (DnR) dataset, which is currently at version 2. While DnR v2 has been an incredibly useful resource for CASS, several areas of improvement have been identified, particularly through its use in the 2023 Sound Demixing Challenge. In this work, we develop version 3 of the DnR dataset, addressing issues relating to vocal content in non-dialogue stems, loudness distributions, mastering process, and linguistic diversity. In particular, the dialogue stem of DnR v3 includes speech content from more than 30 languages from multiple families including but not limited to the Germanic, Romance, Indo-Aryan, Dravidian, Malayo-Polynesian, and Bantu families. Benchmark results using the Bandit model indicated that training on multilingual data yields significant generalizability to the model even in languages with low data availability. Even in languages with high data availability, the multilingual model often performs on par or better than dedicated models trained on monolingual CASS datasets.


A Generalized Bandsplit Neural Network for Cinematic Audio Source Separation

arXiv.org Artificial Intelligence

Cinematic audio source separation is a relatively new subtask of audio source separation, with the aim of extracting the dialogue, music, and effects stems from their mixture. In this work, we developed a model generalizing the Bandsplit RNN for any complete or overcomplete partitions of the frequency axis. Psychoacoustically motivated frequency scales were used to inform the band definitions which are now defined with redundancy for more reliable feature extraction. A loss function motivated by the signal-to-noise ratio and the sparsity-promoting property of the 1-norm was proposed. We additionally exploit the information-sharing property of a common-encoder setup to reduce computational complexity during both training and inference, improve separation performance for hard-to-generalize classes of sounds, and allow flexibility during inference time with detachable decoders. Our best model sets the state of the art on the Divide and Remaster dataset with performance above the ideal ratio mask for the dialogue stem.


Looking Similar, Sounding Different: Leveraging Counterfactual Cross-Modal Pairs for Audiovisual Representation Learning

arXiv.org Artificial Intelligence

Audiovisual representation learning typically relies on the correspondence between sight and sound. However, there are often multiple audio tracks that can correspond with a visual scene. Consider, for example, different conversations on the same crowded street. The effect of such counterfactual pairs on audiovisual representation learning has not been previously explored. To investigate this, we use dubbed versions of movies to augment cross-modal contrastive learning. Our approach learns to represent alternate audio tracks, differing only in speech content, similarly to the same video. Our results show that dub-augmented training improves performance on a range of auditory and audiovisual tasks, without significantly affecting linguistic task performance overall. We additionally compare this approach to a strong baseline where we remove speech before pretraining, and find that dub-augmented training is more effective, including for paralinguistic and audiovisual tasks where speech removal leads to worse performance. These findings highlight the importance of considering speech variation when learning scene-level audiovisual correspondences and suggest that dubbed audio can be a useful augmentation technique for training audiovisual models toward more robust performance.


Learning to Fuse Music Genres with Generative Adversarial Dual Learning

arXiv.org Artificial Intelligence

FusionGAN is a novel genre fusion framework for music generation that integrates the strengths of generative adversarial networks and dual learning. In particular, the proposed method offers a dual learning extension that can effectively integrate the styles of the given domains. To efficiently quantify the difference among diverse domains and avoid the vanishing gradient issue, FusionGAN provides a Wasserstein based metric to approximate the distance between the target domain and the existing domains. Adopting the Wasserstein distance, a new domain is created by combining the patterns of the existing domains using adversarial learning. Experimental results on public music datasets demonstrated that our approach could effectively merge two genres.