Goto

Collaborating Authors

 Wu, Chenxia


Unsupervised Semantic Action Discovery from Video Collections

arXiv.org Machine Learning

Human communication takes many forms, including speech, text and instructional videos. It typically has an underlying structure, with a starting point, ending, and certain objective steps between them. In this paper, we consider instructional videos where there are tens of millions of them on the Internet. We propose a method for parsing a video into such semantic steps in an unsupervised way. Our method is capable of providing a semantic "storyline" of the video composed of its objective steps. We accomplish this using both visual and language cues in a joint generative model. Our method can also provide a textual description for each of the identified semantic steps and video segments. We evaluate our method on a large number of complex YouTube videos and show that our method discovers semantically correct instructions for a variety of tasks.


Bilevel Visual Words Coding for Image Classification

AAAI Conferences

Bag-of-Words approach has played an important role in recent works for image classification. In consideration of efficiency, most methods use k-means clustering to generate the codebook. The obtained codebooks often lose the cluster size and shape information with distortion errors and low discriminative power. Though some efforts have been made to optimize codebook in sparse coding, they usually incur higher computational cost. Moreover, they ignore the correlations between codes in the following coding stage, that leads to low discriminative power of the final representation. In this paper, we propose a bilevel visual words coding approach in consideration of representation ability, discriminative power and efficiency. In the bilevel codebook generation stage, k-means and an efficient spectral clustering are respectively run in each level by taking both class information and the shapes of each visual word cluster into account. To obtain discriminative representation in the coding stage, we design a certain localized coding rule with bilevel codebook to select local bases. To further achieve an efficient coding referring to this rule, an online method is proposed to efficiently learn a projection of local descriptor to the visual words in the codebook. After projection, coding can be efficiently completed by a low dimensional localized soft-assignment. Experimental results show that our proposed bilevel visual words coding approach outperforms the state-of-the-art approaches for image classification.