Wu, Bin
Synthetic Data is an Elegant GIFT for Continual Vision-Language Models
Wu, Bin, Shi, Wuxuan, Wang, Jinqiao, Ye, Mang
Pre-trained Vision-Language Models (VLMs) require Continual Learning (CL) to efficiently update their knowledge and adapt to various downstream tasks without retraining from scratch. However, for VLMs, in addition to the loss of knowledge previously learned from downstream tasks, pre-training knowledge is also corrupted during continual fine-tuning. This issue is exacerbated by the unavailability of original pre-training data, leaving VLM's generalization ability degrading. In this paper, we propose GIFT, a novel continual fine-tuning approach that utilizes synthetic data to overcome catastrophic forgetting in VLMs. Taking advantage of recent advances in text-to-image synthesis, we employ a pre-trained diffusion model to recreate both pre-training and learned downstream task data. In this way, the VLM can revisit previous knowledge through distillation on matching diffusion-generated images and corresponding text prompts. Leveraging the broad distribution and high alignment between synthetic image-text pairs in VLM's feature space, we propose a contrastive distillation loss along with an image-text alignment constraint. To further combat in-distribution overfitting and enhance distillation performance with limited amount of generated data, we incorporate adaptive weight consolidation, utilizing Fisher information from these synthetic image-text pairs and achieving a better stability-plasticity balance. Extensive experiments demonstrate that our method consistently outperforms previous state-of-the-art approaches across various settings.
Graph Foundation Models for Recommendation: A Comprehensive Survey
Wu, Bin, Wang, Yihang, Zeng, Yuanhao, Liu, Jiawei, Zhao, Jiashu, Yang, Cheng, Li, Yawen, Xia, Long, Yin, Dawei, Shi, Chuan
Recommender systems (RS) serve as a fundamental tool for navigating the vast expanse of online information, with deep learning advancements playing an increasingly important role in improving ranking accuracy. Among these, graph neural networks (GNNs) excel at extracting higher-order structural information, while large language models (LLMs) are designed to process and comprehend natural language, making both approaches highly effective and widely adopted. Recent research has focused on graph foundation models (GFMs), which integrate the strengths of GNNs and LLMs to model complex RS problems more efficiently by leveraging the graph-based structure of user-item relationships alongside textual understanding. In this survey, we provide a comprehensive overview of GFM-based RS technologies by introducing a clear taxonomy of current approaches, diving into methodological details, and highlighting key challenges and future directions. By synthesizing recent advancements, we aim to offer valuable insights into the evolving landscape of GFM-based recommender systems.
SciSafeEval: A Comprehensive Benchmark for Safety Alignment of Large Language Models in Scientific Tasks
Li, Tianhao, Lu, Jingyu, Chu, Chuangxin, Zeng, Tianyu, Zheng, Yujia, Li, Mei, Huang, Haotian, Wu, Bin, Liu, Zuoxian, Ma, Kai, Yuan, Xuejing, Wang, Xingkai, Ding, Keyan, Chen, Huajun, Zhang, Qiang
Large language models (LLMs) have a transformative impact on a variety of scientific tasks across disciplines including biology, chemistry, medicine, and physics. However, ensuring the safety alignment of these models in scientific research remains an underexplored area, with existing benchmarks primarily focusing on textual content and overlooking key scientific representations such as molecular, protein, and genomic languages. Moreover, the safety mechanisms of LLMs in scientific tasks are insufficiently studied. To address these limitations, we introduce SciSafeEval, a comprehensive benchmark designed to evaluate the safety alignment of LLMs across a range of scientific tasks. SciSafeEval spans multiple scientific languages-including textual, molecular, protein, and genomic-and covers a wide range of scientific domains. We evaluate LLMs in zero-shot, few-shot and chain-of-thought settings, and introduce a "jailbreak" enhancement feature that challenges LLMs equipped with safety guardrails, rigorously testing their defenses against malicious intention. Our benchmark surpasses existing safety datasets in both scale and scope, providing a robust platform for assessing the safety and performance of LLMs in scientific contexts. This work aims to facilitate the responsible development and deployment of LLMs, promoting alignment with safety and ethical standards in scientific research.
A Transformer Model for Segmentation, Classification, and Caller Identification of Marmoset Vocalization
Wu, Bin, Takamichi, Shinnosuke, Sakti, Sakriani, Nakamura, Satoshi
Marmoset, a highly vocalized primate, has become a popular animal model for studying social-communicative behavior and its underlying mechanism comparing with human infant linguistic developments. In the study of vocal communication, it is vital to know the caller identities, call contents, and vocal exchanges. Previous work of a CNN has achieved a joint model for call segmentation, classification, and caller identification for marmoset vocalizations. However, the CNN has limitations in modeling long-range acoustic patterns; the Transformer architecture that has been shown to outperform CNNs, utilizes the self-attention mechanism that efficiently segregates information parallelly over long distances and captures the global structure of marmoset vocalization. We propose using the Transformer to jointly segment and classify the marmoset calls and identify the callers for each vocalization.
Instruction Tuning With Loss Over Instructions
Shi, Zhengyan, Yang, Adam X., Wu, Bin, Aitchison, Laurence, Yilmaz, Emine, Lipani, Aldo
Instruction tuning plays a crucial role in shaping the outputs of language models (LMs) to desired styles. In this work, we propose a simple yet effective method, Instruction Modelling (IM), which trains LMs by applying a loss function to the instruction and prompt part rather than solely to the output part. Through experiments across 21 diverse benchmarks, we show that, in many scenarios, IM can effectively improve the LM performance on both NLP tasks (e.g., MMLU, TruthfulQA, and HumanEval) and open-ended generation benchmarks (e.g., MT-Bench and AlpacaEval). Remarkably, in the most advantageous case, IM boosts model performance on AlpacaEval 1.0 by over 100%. We identify two key factors influencing the effectiveness of IM: (1) The ratio between instruction length and output length in the training data; and (2) The number of training examples. We observe that IM is especially beneficial when trained on datasets with lengthy instructions paired with brief outputs, or under the Superficial Alignment Hypothesis (SAH) where a small amount of training examples are used for instruction tuning. Further analysis substantiates our hypothesis that the improvement can be attributed to reduced overfitting to instruction tuning datasets. Our work provides practical guidance for instruction tuning LMs, especially in low-resource scenarios.
AC-EVAL: Evaluating Ancient Chinese Language Understanding in Large Language Models
Wei, Yuting, Xu, Yuanxing, Wei, Xinru, Yang, Simin, Zhu, Yangfu, Li, Yuqing, Liu, Di, Wu, Bin
Given the importance of ancient Chinese in capturing the essence of rich historical and cultural heritage, the rapid advancements in Large Language Models (LLMs) necessitate benchmarks that can effectively evaluate their understanding of ancient contexts. To meet this need, we present AC-EVAL, an innovative benchmark designed to assess the advanced knowledge and reasoning capabilities of LLMs within the context of ancient Chinese. AC-EVAL is structured across three levels of difficulty reflecting different facets of language comprehension: general historical knowledge, short text understanding, and long text comprehension. The benchmark comprises 13 tasks, spanning historical facts, geography, social customs, art, philosophy, classical poetry and prose, providing a comprehensive assessment framework. Our extensive evaluation of top-performing LLMs, tailored for both English and Chinese, reveals a substantial potential for enhancing ancient text comprehension. By highlighting the strengths and weaknesses of LLMs, AC-EVAL aims to promote their development and application forward in the realms of ancient Chinese language education and scholarly research. The AC-EVAL data and evaluation code are available at https://github.com/yuting-wei/AC-EVAL.
Graph Sampling-based Meta-Learning for Molecular Property Prediction
Zhuang, Xiang, Zhang, Qiang, Wu, Bin, Ding, Keyan, Fang, Yin, Chen, Huajun
Molecular property is usually observed with a limited number of samples, and researchers have considered property prediction as a few-shot problem. One important fact that has been ignored by prior works is that each molecule can be recorded with several different properties simultaneously. To effectively utilize many-to-many correlations of molecules and properties, we propose a Graph Sampling-based Meta-learning (GS-Meta) framework for few-shot molecular property prediction. First, we construct a Molecule-Property relation Graph (MPG): molecule and properties are nodes, while property labels decide edges. Then, to utilize the topological information of MPG, we reformulate an episode in meta-learning as a subgraph of the MPG, containing a target property node, molecule nodes, and auxiliary property nodes. Third, as episodes in the form of subgraphs are no longer independent of each other, we propose to schedule the subgraph sampling process with a contrastive loss function, which considers the consistency and discrimination of subgraphs. Extensive experiments on 5 commonly-used benchmarks show GS-Meta consistently outperforms state-of-the-art methods by 5.71%-6.93% in ROC-AUC and verify the effectiveness of each proposed module. Our code is available at https://github.com/HICAI-ZJU/GS-Meta.
OneShotSTL: One-Shot Seasonal-Trend Decomposition For Online Time Series Anomaly Detection And Forecasting
He, Xiao, Li, Ye, Tan, Jian, Wu, Bin, Li, Feifei
Seasonal-trend decomposition is one of the most fundamental concepts in time series analysis that supports various downstream tasks, including time series anomaly detection and forecasting. However, existing decomposition methods rely on batch processing with a time complexity of O(W), where W is the number of data points within a time window. Therefore, they cannot always efficiently support real-time analysis that demands low processing delay. To address this challenge, we propose OneShotSTL, an efficient and accurate algorithm that can decompose time series online with an update time complexity of O(1). OneShotSTL is more than $1,000$ times faster than the batch methods, with accuracy comparable to the best counterparts. Extensive experiments on real-world benchmark datasets for downstream time series anomaly detection and forecasting tasks demonstrate that OneShotSTL is from 10 to over 1,000 times faster than the state-of-the-art methods, while still providing comparable or even better accuracy.
Relation-aware Hierarchical Attention Framework for Video Question Answering
Li, Fangtao, Bai, Ting, Cao, Chenyu, Liu, Zihe, Yan, Chenghao, Wu, Bin
Video Question Answering (VideoQA) is a challenging video understanding task since it requires a deep understanding of both question and video. Previous studies mainly focus on extracting sophisticated visual and language embeddings, fusing them by delicate hand-crafted networks.However, the relevance of different frames, objects, and modalities to the question are varied along with the time, which is ignored in most of existing methods. Lacking understanding of the the dynamic relationships and interactions among objects brings a great challenge to VideoQA task.To address this problem, we propose a novel Relation-aware Hierarchical Attention (RHA) framework to learn both the static and dynamic relations of the objects in videos. In particular, videos and questions are embedded by pre-trained models firstly to obtain the visual and textual features. Then a graph-based relation encoder is utilized to extract the static relationship between visual objects.To capture the dynamic changes of multimodal objects in different video frames, we consider the temporal, spatial, and semantic relations, and fuse the multimodal features by hierarchical attention mechanism to predict the answer. We conduct extensive experiments on a large scale VideoQA dataset, and the experimental results demonstrate that our RHA outperforms the state-of-the-art methods.
Hierarchical Macro Strategy Model for MOBA Game AI
Wu, Bin, Fu, Qiang, Liang, Jing, Qu, Peng, Li, Xiaoqian, Wang, Liang, Liu, Wei, Yang, Wei, Liu, Yongsheng
The next challenge of game AI lies in Real Time Strategy (RTS) games. RTS games provide partially observable gaming environments, where agents interact with one another in an action space much larger than that of GO. Mastering RTS games requires both strong macro strategies and delicate micro level execution. Recently, great progress has been made in micro level execution, while complete solutions for macro strategies are still lacking. In this paper, we propose a novel learning-based Hierarchical Macro Strategy model for mastering MOBA games, a sub-genre of RTS games. Trained by the Hierarchical Macro Strategy model, agents explicitly make macro strategy decisions and further guide their micro level execution. Moreover, each of the agents makes independent strategy decisions, while simultaneously communicating with the allies through leveraging a novel imitated cross-agent communication mechanism. We perform comprehensive evaluations on a popular 5v5 Multiplayer Online Battle Arena (MOBA) game. Our 5-AI team achieves a 48% winning rate against human player teams which are ranked top 1% in the player ranking system.