Wu, Bichen
Open-Vocabulary Semantic Segmentation with Mask-adapted CLIP
Liang, Feng, Wu, Bichen, Dai, Xiaoliang, Li, Kunpeng, Zhao, Yinan, Zhang, Hang, Zhang, Peizhao, Vajda, Peter, Marculescu, Diana
Open-vocabulary semantic segmentation aims to segment an image into semantic regions according to text descriptions, which may not have been seen during training. Recent two-stage methods first generate class-agnostic mask proposals and then leverage pre-trained vision-language models, e.g., CLIP, to classify masked regions. We identify the performance bottleneck of this paradigm to be the pre-trained CLIP model, since it does not perform well on masked images. To address this, we propose to finetune CLIP on a collection of masked image regions and their corresponding text descriptions. We collect training data by mining an existing image-caption dataset (e.g., COCO Captions), using CLIP to match masked image regions to nouns in the image captions. Compared with the more precise and manually annotated segmentation labels with fixed classes (e.g., COCO-Stuff), we find our noisy but diverse dataset can better retain CLIP's generalization ability. Along with finetuning the entire model, we utilize the "blank" areas in masked images using a method we dub mask prompt tuning. Experiments demonstrate mask prompt tuning brings significant improvement without modifying any weights of CLIP, and it can further improve a fully finetuned model. In particular, when trained on COCO and evaluated on ADE20K-150, our best model achieves 29.6% mIoU, which is +8.5% higher than the previous state-of-the-art. For the first time, open-vocabulary generalist models match the performance of supervised specialist models in 2017 without dataset-specific adaptations.
Pruning Compact ConvNets for Efficient Inference
Ghosh, Sayan, Prasad, Karthik, Dai, Xiaoliang, Zhang, Peizhao, Wu, Bichen, Cormode, Graham, Vajda, Peter
Neural network pruning is frequently used to compress over-parameterized networks by large amounts, while incurring only marginal drops in generalization performance. However, the impact of pruning on networks that have been highly optimized for efficient inference has not received the same level of attention. In this paper, we analyze the effect of pruning for computer vision, and study state-ofthe-art ConvNets, such as the FBNetV3 family of models. We show that model pruning approaches can be used to further optimize networks trained through NAS (Neural Architecture Search). The resulting family of pruned models can consistently obtain better performance than existing FBNetV3 models at the same level of computation, and thus provide state-of-the-art results when trading off between computational complexity and generalization performance on the ImageNet benchmark. In addition to better generalization performance, we also demonstrate that when limited computation resources are available, pruning FBNetV3 models incur only a fraction of GPU-hours involved in running a full-scale NAS. Neural networks frequently suffer from the problem of over-parameterization, such that the model can be compressed by a large factor to drastically reduce memory footprint, computation as well as energy consumption while maintaining similar performance. This is especially pronounced for models for computer vision (Simonyan & Zisserman, 2014), speech recognition (Pratap et al., 2020) and large text understanding models such as BERT (Devlin et al., 2018).
3D-Aware Encoding for Style-based Neural Radiance Fields
Li, Yu-Jhe, Xu, Tao, Wu, Bichen, Zheng, Ningyuan, Dai, Xiaoliang, Pumarola, Albert, Zhang, Peizhao, Vajda, Peter, Kitani, Kris
We tackle the task of NeRF inversion for style-based neural radiance fields, (e.g., StyleNeRF). In the task, we aim to learn an inversion function to project an input image to the latent space of a NeRF generator and then synthesize novel views of the original image based on the latent code. Compared with GAN inversion for 2D generative models, NeRF inversion not only needs to 1) preserve the identity of the input image, but also 2) ensure 3D consistency in generated novel views. This requires the latent code obtained from the single-view image to be invariant across multiple views. To address this new challenge, we propose a two-stage encoder for style-based NeRF inversion. In the first stage, we introduce a base encoder that converts the input image to a latent code. To ensure the latent code is view-invariant and is able to synthesize 3D consistent novel view images, we utilize identity contrastive learning to train the base encoder. Second, to better preserve the identity of the input image, we introduce a refining encoder to refine the latent code and add finer details to the output image. Importantly note that the novelty of this model lies in the design of its first-stage encoder which produces the closest latent code lying on the latent manifold and thus the refinement in the second stage would be close to the NeRF manifold. Through extensive experiments, we demonstrate that our proposed two-stage encoder qualitatively and quantitatively exhibits superiority over the existing encoders for inversion in both image reconstruction and novel-view rendering.
Differentiable NAS Framework and Application to Ads CTR Prediction
Krishna, Ravi, Kalaiah, Aravind, Wu, Bichen, Naumov, Maxim, Mudigere, Dheevatsa, Smelyanskiy, Misha, Keutzer, Kurt
Neural architecture search (NAS) methods aim to automatically find the optimal deep neural network (DNN) architecture as measured by a given objective function, typically some combination of task accuracy and inference efficiency. For many areas, such as computer vision and natural language processing, this is a critical, yet still time consuming process. New NAS methods have recently made progress in improving the efficiency of this process. We implement an extensible and modular framework for Differentiable Neural Architecture Search (DNAS) to help solve this problem. We include an overview of the major components of our codebase and how they interact, as well as a section on implementing extensions to it (including a sample), in order to help users adopt our framework for their applications across different categories of deep learning models. To assess the capabilities of our methodology and implementation, we apply DNAS to the problem of ads click-through rate (CTR) prediction, arguably the highest-value and most worked on AI problem at hyperscalers today. We develop and tailor novel search spaces to a Deep Learning Recommendation Model (DLRM) backbone for CTR prediction, and report state-of-the-art results on the Criteo Kaggle CTR prediction dataset.
Image2Point: 3D Point-Cloud Understanding with Pretrained 2D ConvNets
Xu, Chenfeng, Yang, Shijia, Zhai, Bohan, Wu, Bichen, Yue, Xiangyu, Zhan, Wei, Vajda, Peter, Keutzer, Kurt, Tomizuka, Masayoshi
3D point-clouds and 2D images are different visual representations of the physical world. While human vision can understand both representations, computer vision models designed for 2D image and 3D point-cloud understanding are quite different. Our paper investigates the potential for transferability between these two representations by empirically investigating whether this approach works, what factors affect the transfer performance, and how to make it work even better. We discovered that we can indeed use the same neural net model architectures to understand both images and point-clouds. Moreover, we can transfer pretrained weights from image models to point-cloud models with minimal effort. Specifically, based on a 2D ConvNet pretrained on an image dataset, we can transfer the image model to a point-cloud model by \textit{inflating} 2D convolutional filters to 3D then finetuning its input, output, and optionally normalization layers. The transferred model can achieve competitive performance on 3D point-cloud classification, indoor and driving scene segmentation, even beating a wide range of point-cloud models that adopt task-specific architectures and use a variety of tricks.
Improving Context-Based Meta-Reinforcement Learning with Self-Supervised Trajectory Contrastive Learning
Wang, Bernie, Xu, Simon, Keutzer, Kurt, Gao, Yang, Wu, Bichen
Meta-reinforcement learning typically requires orders of magnitude more samples than single task reinforcement learning methods. This is because meta-training needs to deal with more diverse distributions and train extra components such as context encoders. To address this, we propose a novel self-supervised learning task, which we named Trajectory Contrastive Learning (TCL), to improve meta-training. TCL adopts contrastive learning and trains a context encoder to predict whether two transition windows are sampled from the same trajectory. TCL leverages the natural hierarchical structure of context-based meta-RL and makes minimal assumptions, allowing it to be generally applicable to context-based meta-RL algorithms. It accelerates the training of context encoders and improves meta-training overall. Experiments show that TCL performs better or comparably than a strong meta-RL baseline in most of the environments on both meta-RL MuJoCo (5 of 6) and Meta-World benchmarks (44 out of 50).
ePointDA: An End-to-End Simulation-to-Real Domain Adaptation Framework for LiDAR Point Cloud Segmentation
Zhao, Sicheng, Wang, Yezhen, Li, Bo, Wu, Bichen, Gao, Yang, Xu, Pengfei, Darrell, Trevor, Keutzer, Kurt
Due to its robust and precise distance measurements, LiDAR plays an important role in scene understanding for autonomous driving. Training deep neural networks (DNNs) on LiDAR data requires large-scale point-wise annotations, which are time-consuming and expensive to obtain. Instead, simulation-to-real domain adaptation (SRDA) trains a DNN using unlimited synthetic data with automatically generated labels and transfers the learned model to real scenarios. Existing SRDA methods for LiDAR point cloud segmentation mainly employ a multi-stage pipeline and focus on feature-level alignment. They require prior knowledge of real-world statistics and ignore the pixel-level dropout noise gap and the spatial feature gap between different domains. In this paper, we propose a novel end-to-end framework, named ePointDA, to address the above issues. Specifically, ePointDA consists of three components: self-supervised dropout noise rendering, statistics-invariant and spatially-adaptive feature alignment, and transferable segmentation learning. The joint optimization enables ePointDA to bridge the domain shift at the pixel-level by explicitly rendering dropout noise for synthetic LiDAR and at the feature-level by spatially aligning the features between different domains, without requiring the real-world statistics. Extensive experiments adapting from synthetic GTA-LiDAR to real KITTI and SemanticKITTI demonstrate the superiority of ePointDA for LiDAR point cloud segmentation.
Unsupervised Domain Adaptation: from Simulation Engine to the RealWorld
Zhao, Sicheng, Wu, Bichen, Gonzalez, Joseph, Seshia, Sanjit A., Keutzer, Kurt
Large-scale labeled training datasets have enabled deep neural networks to excel on a wide range of benchmark vision tasks. However, in many applications it is prohibitively expensive or time-consuming to obtain large quantities of labeled data. To cope with limited labeled training data, many have attempted to directly apply models trained on a large-scale labeled source domain to another sparsely labeled target domain. Unfortunately, direct transfer across domains often performs poorly due to domain shift and dataset bias. Domain adaptation is the machine learning paradigm that aims to learn a model from a source domain that can perform well on a different (but related) target domain. In this paper, we summarize and compare the latest unsupervised domain adaptation methods in computer vision applications. We classify the non-deep approaches into sample re-weighting and intermediate subspace transformation categories, while the deep strategy includes discrepancy-based methods, adversarial generative models, adversarial discriminative models and reconstruction-based methods. We also discuss some potential directions.