Not enough data to create a plot.
Try a different view from the menu above.
Wright, Stephen J.
Towards Weaker Variance Assumptions for Stochastic Optimization
Alacaoglu, Ahmet, Malitsky, Yura, Wright, Stephen J.
We revisit a classical assumption for analyzing stochastic gradient algorithms where the squared norm of the stochastic subgradient (or the variance for smooth problems) is allowed to grow as fast as the squared norm of the optimization variable. We contextualize this assumption in view of its inception in the 1960s, its seemingly independent appearance in the recent literature, its relationship to weakest-known variance assumptions for analyzing stochastic gradient algorithms, and its relevance in deterministic problems for non-Lipschitz nonsmooth convex optimization. We build on and extend a connection recently made between this assumption and the Halpern iteration. For convex nonsmooth, and potentially stochastic, optimization, we analyze horizon-free, anytime algorithms with last-iterate rates. For problems beyond simple constrained optimization, such as convex problems with functional constraints or regularized convex-concave min-max problems, we obtain rates for optimality measures that do not require boundedness of the feasible set.
First-ish Order Methods: Hessian-aware Scalings of Gradient Descent
Smee, Oscar, Roosta, Fred, Wright, Stephen J.
Gradient descent is the primary workhorse for optimizing large-scale problems in machine learning. However, its performance is highly sensitive to the choice of the learning rate. A key limitation of gradient descent is its lack of natural scaling, which often necessitates expensive line searches or heuristic tuning to determine an appropriate step size. In this paper, we address this limitation by incorporating Hessian information to scale the gradient direction. By accounting for the curvature of the function along the gradient, our adaptive, Hessian-aware scaling method ensures a local unit step size guarantee, even in nonconvex settings. Near a local minimum that satisfies the second-order sufficient conditions, our approach achieves linear convergence with a unit step size. We show that our method converges globally under a significantly weaker version of the standard Lipschitz gradient smoothness assumption. Even when Hessian information is inexact, the local unit step size guarantee and global convergence properties remain valid under mild conditions. Finally, we validate our theoretical results empirically on a range of convex and nonconvex machine learning tasks, showcasing the effectiveness of the approach.
Optimal Rates for Robust Stochastic Convex Optimization
Gao, Changyu, Lowy, Andrew, Zhou, Xingyu, Wright, Stephen J.
Machine learning algorithms in high-dimensional settings are highly susceptible to the influence of even a small fraction of structured outliers, making robust optimization techniques essential. In particular, within the $\epsilon$-contamination model, where an adversary can inspect and replace up to an $\epsilon$-fraction of the samples, a fundamental open problem is determining the optimal rates for robust stochastic convex optimization (SCO) under such contamination. We develop novel algorithms that achieve minimax-optimal excess risk (up to logarithmic factors) under the $\epsilon$-contamination model. Our approach improves over existing algorithms, which are not only suboptimal but also require stringent assumptions, including Lipschitz continuity and smoothness of individual sample functions. By contrast, our optimal algorithms do not require these restrictive assumptions, and can handle nonsmooth but Lipschitz population loss functions. We complement our algorithmic developments with a tight lower bound for robust SCO.
Private Heterogeneous Federated Learning Without a Trusted Server Revisited: Error-Optimal and Communication-Efficient Algorithms for Convex Losses
Gao, Changyu, Lowy, Andrew, Zhou, Xingyu, Wright, Stephen J.
We revisit the problem of federated learning (FL) with private data from people who do not trust the server or other silos/clients. In this context, every silo (e.g. hospital) has data from several people (e.g. patients) and needs to protect the privacy of each person's data (e.g. health records), even if the server and/or other silos try to uncover this data. Inter-Silo Record-Level Differential Privacy (ISRL-DP) prevents each silo's data from being leaked, by requiring that silo i's communications satisfy item-level differential privacy. Prior work arXiv:2106.09779 characterized the optimal excess risk bounds for ISRL-DP algorithms with homogeneous (i.i.d.) silo data and convex loss functions. However, two important questions were left open: (1) Can the same excess risk bounds be achieved with heterogeneous (non-i.i.d.) silo data? (2) Can the optimal risk bounds be achieved with fewer communication rounds? In this paper, we give positive answers to both questions. We provide novel ISRL-DP FL algorithms that achieve the optimal excess risk bounds in the presence of heterogeneous silo data. Moreover, our algorithms are more communication-efficient than the prior state-of-the-art. For smooth loss functions, our algorithm achieves the optimal excess risk bound and has communication complexity that matches the non-private lower bound. Additionally, our algorithms are more computationally efficient than the previous state-of-the-art.
Robust Second-Order Nonconvex Optimization and Its Application to Low Rank Matrix Sensing
Li, Shuyao, Cheng, Yu, Diakonikolas, Ilias, Diakonikolas, Jelena, Ge, Rong, Wright, Stephen J.
Finding an approximate second-order stationary point (SOSP) is a well-studied and fundamental problem in stochastic nonconvex optimization with many applications in machine learning. However, this problem is poorly understood in the presence of outliers, limiting the use of existing nonconvex algorithms in adversarial settings. In this paper, we study the problem of finding SOSPs in the strong contamination model, where a constant fraction of datapoints are arbitrarily corrupted. We introduce a general framework for efficiently finding an approximate SOSP with \emph{dimension-independent} accuracy guarantees, using $\widetilde{O}({D^2}/{\epsilon})$ samples where $D$ is the ambient dimension and $\epsilon$ is the fraction of corrupted datapoints. As a concrete application of our framework, we apply it to the problem of low rank matrix sensing, developing efficient and provably robust algorithms that can tolerate corruptions in both the sensing matrices and the measurements. In addition, we establish a Statistical Query lower bound providing evidence that the quadratic dependence on $D$ in the sample complexity is necessary for computationally efficient algorithms.
Extending the Reach of First-Order Algorithms for Nonconvex Min-Max Problems with Cohypomonotonicity
Alacaoglu, Ahmet, Kim, Donghwan, Wright, Stephen J.
We focus on constrained, $L$-smooth, nonconvex-nonconcave min-max problems either satisfying $\rho$-cohypomonotonicity or admitting a solution to the $\rho$-weakly Minty Variational Inequality (MVI), where larger values of the parameter $\rho>0$ correspond to a greater degree of nonconvexity. These problem classes include examples in two player reinforcement learning, interaction dominant min-max problems, and certain synthetic test problems on which classical min-max algorithms fail. It has been conjectured that first-order methods can tolerate value of $\rho$ no larger than $\frac{1}{L}$, but existing results in the literature have stagnated at the tighter requirement $\rho < \frac{1}{2L}$. With a simple argument, we obtain optimal or best-known complexity guarantees with cohypomonotonicity or weak MVI conditions for $\rho < \frac{1}{L}$. The algorithms we analyze are inexact variants of Halpern and Krasnosel'ski\u{\i}-Mann (KM) iterations. We also provide algorithms and complexity guarantees in the stochastic case with the same range on $\rho$. Our main insight for the improvements in the convergence analyses is to harness the recently proposed "conic nonexpansiveness" property of operators. As byproducts, we provide a refined analysis for inexact Halpern iteration and propose a stochastic KM iteration with a multilevel Monte Carlo estimator.
Complexity of Single Loop Algorithms for Nonlinear Programming with Stochastic Objective and Constraints
Alacaoglu, Ahmet, Wright, Stephen J.
We analyze the complexity of single-loop quadratic penalty and augmented Lagrangian algorithms for solving nonconvex optimization problems with functional equality constraints. We consider three cases, in all of which the objective is stochastic and smooth, that is, an expectation over an unknown distribution that is accessed by sampling. The nature of the equality constraints differs among the three cases: deterministic and linear in the first case, deterministic, smooth and nonlinear in the second case, and stochastic, smooth and nonlinear in the third case. Variance reduction techniques are used to improve the complexity. To find a point that satisfies $\varepsilon$-approximate first-order conditions, we require $\widetilde{O}(\varepsilon^{-3})$ complexity in the first case, $\widetilde{O}(\varepsilon^{-4})$ in the second case, and $\widetilde{O}(\varepsilon^{-5})$ in the third case. For the first and third cases, they are the first algorithms of "single loop" type (that also use $O(1)$ samples at each iteration) that still achieve the best-known complexity guarantees.
Accelerating optimization over the space of probability measures
Chen, Shi, Li, Qin, Tse, Oliver, Wright, Stephen J.
Acceleration of gradient-based optimization methods is an issue of significant practical and theoretical interest, particularly in machine learning applications. Most research has focused on optimization over Euclidean spaces, but given the need to optimize over spaces of probability measures in many machine learning problems, it is of interest to investigate accelerated gradient methods in this context too. To this end, we introduce a Hamiltonian-flow approach that is analogous to moment-based approaches in Euclidean space. We demonstrate that algorithms based on this approach can achieve convergence rates of arbitrarily high order. Numerical examples illustrate our claim.
Differentially Private Optimization for Smooth Nonconvex ERM
Gao, Changyu, Wright, Stephen J.
Privacy protection has become a central issue in machine learning algorithms, and differential privacy [Dwork and Roth, 2014] is a rigorous and popular framework for quantifying privacy. We propose a differentially private optimization algorithm that finds an approximate second-order solution for (possibly nonconvex) ERM problems. We propose several techniques to improve the practical performance of the method, including backtracking line search, mini-batching, and a heuristic to avoid the effects of conservative assumptions made in the analysis.
Correcting auto-differentiation in neural-ODE training
Xu, Yewei, Chen, Shi, Li, Qin, Wright, Stephen J.
Does the use of auto-differentiation yield reasonable updates to deep neural networks that represent neural ODEs? Through mathematical analysis and numerical evidence, we find that when the neural network employs high-order forms to approximate the underlying ODE flows (such as the Linear Multistep Method (LMM)), brute-force computation using auto-differentiation often produces non-converging artificial oscillations. In the case of Leapfrog, we propose a straightforward post-processing technique that effectively eliminates these oscillations, rectifies the gradient computation and thus respects the updates of the underlying flow.