Wright, Stephen
Computing Estimators of Dantzig Selector type via Column and Constraint Generation
Mazumder, Rahul, Wright, Stephen, Zheng, Andrew
We consider a class of linear-programming based estimators in reconstructing a sparse signal from linear measurements. Specific formulations of the reconstruction problem considered here include Dantzig selector, basis pursuit (for the case in which the measurements contain no errors), and the fused Dantzig selector (for the case in which the underlying signal is piecewise constant). In spite of being estimators central to sparse signal processing and machine learning, solving these linear programming problems for large scale instances remains a challenging task, thereby limiting their usage in practice. We show that classic constraint- and column-generation techniques from large scale linear programming, when used in conjunction with a commercial implementation of the simplex method, and initialized with the solution from a closely-related Lasso formulation, yields solutions with high efficiency in many settings.
Convergence and Margin of Adversarial Training on Separable Data
Charles, Zachary, Rajput, Shashank, Wright, Stephen, Papailiopoulos, Dimitris
Adversarial training is a technique for training robust machine learning models. To encourage robustness, it iteratively computes adversarial examples for the model, and then re-trains on these examples via some update rule. This work analyzes the performance of adversarial training on linearly separable data, and provides bounds on the number of iterations required for large margin. We show that when the update rule is given by an arbitrary empirical risk minimizer, adversarial training may require exponentially many iterations to obtain large margin. However, if gradient or stochastic gradient update rules are used, only polynomially many iterations are required to find a large-margin separator. By contrast, without the use of adversarial examples, gradient methods may require exponentially many iterations to achieve large margin. Our results are derived by showing that adversarial training with gradient updates minimizes a robust version of the empirical risk at a $\mathcal{O}(\ln(t)^2/t)$ rate, despite non-smoothness. We corroborate our theory empirically.
Bilinear Bandits with Low-rank Structure
Jun, Kwang-Sung, Willett, Rebecca, Wright, Stephen, Nowak, Robert
We introduce the bilinear bandit problem with low-rank structure where an action is a pair of arms from two different entity types, and the reward is a bilinear function of the known feature vectors of the arms. The problem is motivated by numerous applications in which the learner must recommend two different entity types as one action, such as a male / female pair in an online dating service. The unknown in the problem is a $d_1$ by $d_2$ matrix $\mathbf{\Theta}^*$ with rank $r \ll \min\{d_1,d_2\}$ governing the reward generation. Determination of $\mathbf{\Theta}^*$ with low-rank structure poses a significant challenge in finding the right exploration-exploitation tradeoff. In this work, we propose a new two-stage algorithm called "Explore-Subspace-Then-Refine" (ESTR). The first stage is an explicit subspace exploration, while the second stage is a linear bandit algorithm called "almost-low-dimensional OFUL" (LowOFUL) that exploits and further refines the estimated subspace via a regularization technique. We show that the regret of ESTR is $\tilde{O}((d_1+d_2)^{3/2} \sqrt{r T})$ (where $\tilde{O}$ hides logarithmic factors), which improves upon the regret of $\tilde{O}(d_1d_2\sqrt{T})$ of a naive linear bandit reduction. We conjecture that the regret bound of ESTR is unimprovable up to polylogarithmic factors.
ATOMO: Communication-efficient Learning via Atomic Sparsification
Wang, Hongyi, Sievert, Scott, Liu, Shengchao, Charles, Zachary, Papailiopoulos, Dimitris, Wright, Stephen
Distributed model training suffers from communication overheads due to frequent gradient updates transmitted between compute nodes. To mitigate these overheads, several studies propose the use of sparsified stochastic gradients. We argue that these are facets of a general sparsification method that can operate on any possible atomic decomposition. Notable examples include element-wise, singular value, and Fourier decompositions. We present ATOMO, a general framework for atomic sparsification of stochastic gradients. Given a gradient, an atomic decomposition, and a sparsity budget, ATOMO gives a random unbiased sparsification of the atoms minimizing variance. We show that recent methods such as QSGD and TernGrad are special cases of ATOMO, and that sparsifiying the singular value decomposition of neural networks gradients, rather than their coordinates, can lead to significantly faster distributed training.
ATOMO: Communication-efficient Learning via Atomic Sparsification
Wang, Hongyi, Sievert, Scott, Liu, Shengchao, Charles, Zachary, Papailiopoulos, Dimitris, Wright, Stephen
Distributed model training suffers from communication overheads due to frequent gradient updates transmitted between compute nodes. To mitigate these overheads, several studies propose the use of sparsified stochastic gradients. We argue that these are facets of a general sparsification method that can operate on any possible atomic decomposition. Notable examples include element-wise, singular value, and Fourier decompositions. We present ATOMO, a general framework for atomic sparsification of stochastic gradients. Given a gradient, an atomic decomposition, and a sparsity budget, ATOMO gives a random unbiased sparsification of the atoms minimizing variance. We show that recent methods such as QSGD and TernGrad are special cases of ATOMO, and that sparsifiying the singular value decomposition of neural networks gradients, rather than their coordinates, can lead to significantly faster distributed training.
ATOMO: Communication-efficient Learning via Atomic Sparsification
Wang, Hongyi, Sievert, Scott, Liu, Shengchao, Charles, Zachary, Papailiopoulos, Dimitris, Wright, Stephen
Distributed model training suffers from communication overheads due to frequent gradient updates transmitted between compute nodes. To mitigate these overheads, several studies propose the use of sparsified stochastic gradients. We argue that these are facets of a general sparsification method that can operate on any possible atomic decomposition. Notable examples include element-wise, singular value, and Fourier decompositions. We present ATOMO, a general framework for atomic sparsification of stochastic gradients. Given a gradient, an atomic decomposition, and a sparsity budget, ATOMO gives a random unbiased sparsification of the atoms minimizing variance. We show that methods such as QSGD and TernGrad are special cases of ATOMO and show that sparsifiying gradients in their singular value decomposition (SVD), rather than the coordinate-wise one, can lead to significantly faster distributed training.
Dissipativity Theory for Accelerating Stochastic Variance Reduction: A Unified Analysis of SVRG and Katyusha Using Semidefinite Programs
Hu, Bin, Wright, Stephen, Lessard, Laurent
Techniques for reducing the variance of gradient estimates used in stochastic programming algorithms for convex finite-sum problems have received a great deal of attention in recent years. By leveraging dissipativity theory from control, we provide a new perspective on two important variance-reduction algorithms: SVRG and its direct accelerated variant Katyusha. Our perspective provides a physically intuitive understanding of the behavior of SVRG-like methods via a principle of energy conservation. The tools discussed here allow us to automate the convergence analysis of SVRG-like methods by capturing their essential properties in small semidefinite programs amenable to standard analysis and computational techniques. Our approach recovers existing convergence results for SVRG and Katyusha and generalizes the theory to alternative parameter choices. We also discuss how our approach complements the linear coupling technique. Our combination of perspectives leads to a better understanding of accelerated variance-reduced stochastic methods for finite-sum problems.
Training Set Debugging Using Trusted Items
Zhang, Xuezhou (University of Wisconsin-Madison) | Zhu, Xiaojin (University of Wisconsin-Madison) | Wright, Stephen (University of Wisconsin-Madison)
Training set bugs are flaws in the data that adversely affect machine learning. The training set is usually too large for manual inspection, but one may have the resources to verify a few trusted items. The set of trusted items may not by itself be adequate for learning, so we propose an algorithm that uses these items to identify bugs in the training set and thus improves learning. Specifically, our approach seeks the smallest set of changes to the training set labels such that the model learned from this corrected training set predicts labels of the trusted items correctly. We flag the items whose labels are changed as potential bugs, whose labels can be checked for veracity by human experts. To find the bugs in this way is a challenging combinatorial bilevel optimization problem, but it can be relaxed into a continuous optimization problem.Experiments on toy and real data demonstrate that our approach can identify training set bugs effectively and suggest appropriate changes to the labels. Our algorithm is a step toward trustworthy machine learning.
k-Support and Ordered Weighted Sparsity for Overlapping Groups: Hardness and Algorithms
Lim, Cong Han, Wright, Stephen
The k-support and OWL norms generalize the l1 norm, providing better prediction accuracy and better handling of correlated variables. We study the norms obtained from extending the k-support norm and OWL norms to the setting in which there are overlapping groups. The resulting norms are in general NP-hard to compute, but they are tractable for certain collections of groups. To demonstrate this fact, we develop a dynamic program for the problem of projecting onto the set of vectors supported by a fixed number of groups. Our dynamic program utilizes tree decompositions and its complexity scales with the treewidth. This program can be converted to an extended formulation which, for the associated group structure, models the k-group support norms and an overlapping group variant of the ordered weighted l1 norm. Numerical results demonstrate the efficacy of the new penalties.
Online Learning for Changing Environments using Coin Betting
Jun, Kwang-Sung, Orabona, Francesco, Wright, Stephen, Willett, Rebecca
A key challenge in online learning is that classical algorithms can be slow to adapt to changing environments. Recent studies have proposed "meta" algorithms that convert any online learning algorithm to one that is adaptive to changing environments, where the adaptivity is analyzed in a quantity called the strongly-adaptive regret. This paper describes a new meta algorithm that has a strongly-adaptive regret bound that is a factor of $\sqrt{\log(T)}$ better than other algorithms with the same time complexity, where $T$ is the time horizon. We also extend our algorithm to achieve a first-order (i.e., dependent on the observed losses) strongly-adaptive regret bound for the first time, to our knowledge. At its heart is a new parameter-free algorithm for the learning with expert advice (LEA) problem in which experts sometimes do not output advice for consecutive time steps (i.e., \emph{sleeping} experts). This algorithm is derived by a reduction from optimal algorithms for the so-called coin betting problem. Empirical results show that our algorithm outperforms state-of-the-art methods in both learning with expert advice and metric learning scenarios.