Wright, John
Structured Local Minima in Sparse Blind Deconvolution
Zhang, Yuqian, Kuo, Han-wen, Wright, John
Blind deconvolution is a ubiquitous problem of recovering two unknown signals from their convolution. Unfortunately, this is an ill-posed problem in general. This paper focuses on the {\em short and sparse} blind deconvolution problem, where the one unknown signal is short and the other one is sparsely and randomly supported. This variant captures the structure of the unknown signals in several important applications. We assume the short signal to have unit $\ell^2$ norm and cast the blind deconvolution problem as a nonconvex optimization problem over the sphere. We demonstrate that (i) in a certain region of the sphere, every local optimum is close to some shift truncation of the ground truth, and (ii) for a generic short signal of length $k$, when the sparsity of activation signal $\theta\lesssim k^{-2/3}$ and number of measurements $m\gtrsim\poly\paren{k}$, a simple initialization method together with a descent algorithm which escapes strict saddle points recovers a near shift truncation of the ground truth kernel.
Structured Local Minima in Sparse Blind Deconvolution
Zhang, Yuqian, Kuo, Han-wen, Wright, John
Blind deconvolution is a ubiquitous problem of recovering two unknown signals from their convolution. Unfortunately, this is an ill-posed problem in general. This paper focuses on the {\em short and sparse} blind deconvolution problem, where the one unknown signal is short and the other one is sparsely and randomly supported. This variant captures the structure of the unknown signals in several important applications. We assume the short signal to have unit $\ell^2$ norm and cast the blind deconvolution problem as a nonconvex optimization problem over the sphere. We demonstrate that (i) in a certain region of the sphere, every local optimum is close to some shift truncation of the ground truth, and (ii) for a generic short signal of length $k$, when the sparsity of activation signal $\theta\lesssim k^{-2/3}$ and number of measurements $m\gtrsim\poly\paren{k}$, a simple initialization method together with a descent algorithm which escapes strict saddle points recovers a near shift truncation of the ground truth kernel.
Structured Local Optima in Sparse Blind Deconvolution
Zhang, Yuqian, Kuo, Han-Wen, Wright, John
Blind deconvolution is a ubiquitous problem of recovering two unknown signals from their convolution. Unfortunately, this is an ill-posed problem in general. This paper focuses on the {\em short and sparse} blind deconvolution problem, where the one unknown signal is short and the other one is sparsely and randomly supported. This variant captures the structure of the unknown signals in several important applications. We assume the short signal to have unit $\ell^2$ norm and cast the blind deconvolution problem as a nonconvex optimization problem over the sphere. We demonstrate that (i) in a certain region of the sphere, every local optimum is close to some shift truncation of the ground truth, and (ii) for a generic short signal of length $k$, when the sparsity of activation signal $\theta\lesssim k^{-2/3}$ and number of measurements $m\gtrsim poly(k)$, a simple initialization method together with a descent algorithm which escapes strict saddle points recovers a near shift truncation of the ground truth kernel.
Convolutional Phase Retrieval
Qu, Qing, Zhang, Yuqian, Eldar, Yonina, Wright, John
We study the convolutional phase retrieval problem, which asks us to recover an unknown signal ${\mathbf x} $ of length $n$ from $m$ measurements consisting of the magnitude of its cyclic convolution with a known kernel $\mathbf a$ of length $m$. This model is motivated by applications to channel estimation, optics, and underwater acoustic communication, where the signal of interest is acted on by a given channel/filter, and phase information is difficult or impossible to acquire. We show that when $\mathbf a$ is random and $m \geq \Omega(\frac{ \| \mathbf C_{\mathbf x}\|^2}{ \|\mathbf x\|^2 } n \mathrm{poly} \log n)$, $\mathbf x$ can be efficiently recovered up to a global phase using a combination of spectral initialization and generalized gradient descent. The main challenge is coping with dependencies in the measurement operator; we overcome this challenge by using ideas from decoupling theory, suprema of chaos processes and the restricted isometry property of random circulant matrices, and recent analysis for alternating minimizing methods.
Scalable Robust Matrix Recovery: Frank-Wolfe Meets Proximal Methods
Mu, Cun, Zhang, Yuqian, Wright, John, Goldfarb, Donald
Recovering matrices from compressive and grossly corrupted observations is a fundamental problem in robust statistics, with rich applications in computer vision and machine learning. In theory, under certain conditions, this problem can be solved in polynomial time via a natural convex relaxation, known as Compressive Principal Component Pursuit (CPCP). However, all existing provable algorithms for CPCP suffer from superlinear per-iteration cost, which severely limits their applicability to large scale problems. In this paper, we propose provable, scalable and efficient methods to solve CPCP with (essentially) linear per-iteration cost. Our method combines classical ideas from Frank-Wolfe and proximal methods. In each iteration, we mainly exploit Frank-Wolfe to update the low-rank component with rank-one SVD and exploit the proximal step for the sparse term. Convergence results and implementation details are also discussed. We demonstrate the scalability of the proposed approach with promising numerical experiments on visual data.
A Geometric Analysis of Phase Retrieval
Sun, Ju, Qu, Qing, Wright, John
Can we recover a complex signal from its Fourier magnitudes? More generally, given a set of $m$ measurements, $y_k = |\mathbf a_k^* \mathbf x|$ for $k = 1, \dots, m$, is it possible to recover $\mathbf x \in \mathbb{C}^n$ (i.e., length-$n$ complex vector)? This **generalized phase retrieval** (GPR) problem is a fundamental task in various disciplines, and has been the subject of much recent investigation. Natural nonconvex heuristics often work remarkably well for GPR in practice, but lack clear theoretical explanations. In this paper, we take a step towards bridging this gap. We prove that when the measurement vectors $\mathbf a_k$'s are generic (i.i.d. complex Gaussian) and the number of measurements is large enough ($m \ge C n \log^3 n$), with high probability, a natural least-squares formulation for GPR has the following benign geometric structure: (1) there are no spurious local minimizers, and all global minimizers are equal to the target signal $\mathbf x$, up to a global phase; and (2) the objective function has a negative curvature around each saddle point. This structure allows a number of iterative optimization methods to efficiently find a global minimizer, without special initialization. To corroborate the claim, we describe and analyze a second-order trust-region algorithm.
Complete Dictionary Recovery over the Sphere I: Overview and the Geometric Picture
Sun, Ju, Qu, Qing, Wright, John
We consider the problem of recovering a complete (i.e., square and invertible) matrix $\mathbf A_0$, from $\mathbf Y \in \mathbb{R}^{n \times p}$ with $\mathbf Y = \mathbf A_0 \mathbf X_0$, provided $\mathbf X_0$ is sufficiently sparse. This recovery problem is central to theoretical understanding of dictionary learning, which seeks a sparse representation for a collection of input signals and finds numerous applications in modern signal processing and machine learning. We give the first efficient algorithm that provably recovers $\mathbf A_0$ when $\mathbf X_0$ has $O(n)$ nonzeros per column, under suitable probability model for $\mathbf X_0$. In contrast, prior results based on efficient algorithms either only guarantee recovery when $\mathbf X_0$ has $O(\sqrt{n})$ zeros per column, or require multiple rounds of SDP relaxation to work when $\mathbf X_0$ has $O(n^{1-\delta})$ nonzeros per column (for any constant $\delta \in (0, 1)$). } Our algorithmic pipeline centers around solving a certain nonconvex optimization problem with a spherical constraint. In this paper, we provide a geometric characterization of the objective landscape. In particular, we show that the problem is highly structured: with high probability, (1) there are no "spurious" local minimizers; and (2) around all saddle points the objective has a negative directional curvature. This distinctive structure makes the problem amenable to efficient optimization algorithms. In a companion paper (arXiv:1511.04777), we design a second-order trust-region algorithm over the sphere that provably converges to a local minimizer from arbitrary initializations, despite the presence of saddle points.
Complete Dictionary Recovery over the Sphere II: Recovery by Riemannian Trust-region Method
Sun, Ju, Qu, Qing, Wright, John
We consider the problem of recovering a complete (i.e., square and invertible) matrix $\mathbf A_0$, from $\mathbf Y \in \mathbb{R}^{n \times p}$ with $\mathbf Y = \mathbf A_0 \mathbf X_0$, provided $\mathbf X_0$ is sufficiently sparse. This recovery problem is central to theoretical understanding of dictionary learning, which seeks a sparse representation for a collection of input signals and finds numerous applications in modern signal processing and machine learning. We give the first efficient algorithm that provably recovers $\mathbf A_0$ when $\mathbf X_0$ has $O(n)$ nonzeros per column, under suitable probability model for $\mathbf X_0$. Our algorithmic pipeline centers around solving a certain nonconvex optimization problem with a spherical constraint, and hence is naturally phrased in the language of manifold optimization. In a companion paper (arXiv:1511.03607), we have showed that with high probability our nonconvex formulation has no "spurious" local minimizers and around any saddle point the objective function has a negative directional curvature. In this paper, we take advantage of the particular geometric structure, and describe a Riemannian trust region algorithm that provably converges to a local minimizer with from arbitrary initializations. Such minimizers give excellent approximations to rows of $\mathbf X_0$. The rows are then recovered by linear programming rounding and deflation.
When Are Nonconvex Problems Not Scary?
Sun, Ju, Qu, Qing, Wright, John
In this note, we focus on smooth nonconvex optimization problems that obey: (1) all local minimizers are also global; and (2) around any saddle point or local maximizer, the objective has a negative directional curvature. Concrete applications such as dictionary learning, generalized phase retrieval, and orthogonal tensor decomposition are known to induce such structures. We describe a second-order trust-region algorithm that provably converges to a global minimizer efficiently, without special initializations. Finally we highlight alternatives, and open problems in this direction.
Complete Dictionary Recovery over the Sphere
Sun, Ju, Qu, Qing, Wright, John
We consider the problem of recovering a complete (i.e., square and invertible) matrix $\mathbf A_0$, from $\mathbf Y \in \mathbb R^{n \times p}$ with $\mathbf Y = \mathbf A_0 \mathbf X_0$, provided $\mathbf X_0$ is sufficiently sparse. This recovery problem is central to the theoretical understanding of dictionary learning, which seeks a sparse representation for a collection of input signals, and finds numerous applications in modern signal processing and machine learning. We give the first efficient algorithm that provably recovers $\mathbf A_0$ when $\mathbf X_0$ has $O(n)$ nonzeros per column, under suitable probability model for $\mathbf X_0$. In contrast, prior results based on efficient algorithms provide recovery guarantees when $\mathbf X_0$ has only $O(n^{1-\delta})$ nonzeros per column for any constant $\delta \in (0, 1)$. Our algorithmic pipeline centers around solving a certain nonconvex optimization problem with a spherical constraint, and hence is naturally phrased in the language of manifold optimization. To show this apparently hard problem is tractable, we first provide a geometric characterization of the high-dimensional objective landscape, which shows that with high probability there are no "spurious" local minima. This particular geometric structure allows us to design a Riemannian trust region algorithm over the sphere that provably converges to one local minimizer with an arbitrary initialization, despite the presence of saddle points. The geometric approach we develop here may also shed light on other problems arising from nonconvex recovery of structured signals.