Wright, John
Fast, Accurate Manifold Denoising by Tunneling Riemannian Optimization
Wang, Shiyu, Avagyan, Mariam, Shen, Yihan, Lamy, Arnaud, Wang, Tingran, Márka, Szabolcs, Márka, Zsuzsa, Wright, John
Learned denoisers play a fundamental role in various signal generation (e.g., diffusion models) and reconstruction (e.g., compressed sensing) architectures, whose success derives from their ability to leverage low-dimensional structure in data. Existing denoising methods, however, either rely on local approximations that require a linear scan of the entire dataset or treat denoising as generic function approximation problems, often sacrificing efficiency and interpretability. We consider the problem of efficiently denoising a new noisy data point sampled from an unknown $d$-dimensional manifold $M \in \mathbb{R}^D$, using only noisy samples. This work proposes a framework for test-time efficient manifold denoising, by framing the concept of "learning-to-denoise" as "learning-to-optimize". We have two technical innovations: (i) online learning methods which learn to optimize over the manifold of clean signals using only noisy data, effectively "growing" an optimizer one sample at a time. (ii) mixed-order methods which guarantee that the learned optimizers achieve global optimality, ensuring both efficiency and near-optimal denoising performance. We corroborate these claims with theoretical analyses of both the complexity and denoising performance of mixed-order traversal. Our experiments on scientific manifolds demonstrate significantly improved complexity-performance tradeoffs compared to nearest neighbor search, which underpins existing provable denoising approaches based on exhaustive search.
Sequencing the Neurome: Towards Scalable Exact Parameter Reconstruction of Black-Box Neural Networks
Goldfeder, Judah, Roets, Quinten, Guo, Gabe, Wright, John, Lipson, Hod
Inferring the exact parameters of a neural network with only query access is an NP-Hard problem, with few practical existing algorithms. Solutions would have major implications for security, verification, interpretability, and understanding biological networks. The key challenges are the massive parameter space, and complex non-linear relationships between neurons. We resolve these challenges using two insights. First, we observe that almost all networks used in practice are produced by random initialization and first order optimization, an inductive bias that drastically reduces the practical parameter space. Second, we present a novel query generation algorithm that produces maximally informative samples, letting us untangle the non-linear relationships efficiently. We demonstrate reconstruction of a hidden network containing over 1.5 million parameters, and of one 7 layers deep, the largest and deepest reconstructions to date, with max parameter difference less than 0.0001, and illustrate robustness and scalability across a variety of architectures, datasets, and training procedures.
TpopT: Efficient Trainable Template Optimization on Low-Dimensional Manifolds
Yan, Jingkai, Wang, Shiyu, Wei, Xinyu Rain, Wang, Jimmy, Márka, Zsuzsanna, Márka, Szabolcs, Wright, John
In scientific and engineering scenarios, a recurring task is the detection of low-dimensional families of signals or patterns. A classic family of approaches, exemplified by template matching, aims to cover the search space with a dense template bank. While simple and highly interpretable, it suffers from poor computational efficiency due to unfavorable scaling in the signal space dimensionality. In this work, we study TpopT (TemPlate OPTimization) as an alternative scalable framework for detecting low-dimensional families of signals which maintains high interpretability. We provide a theoretical analysis of the convergence of Riemannian gradient descent for TpopT, and prove that it has a superior dimension scaling to covering. We also propose a practical TpopT framework for nonparametric signal sets, which incorporates techniques of embedding and kernel interpolation, and is further configurable into a trainable network architecture by unrolled optimization. The proposed trainable TpopT exhibits significantly improved efficiency-accuracy tradeoffs for gravitational wave detection, where matched filtering is currently a method of choice. We further illustrate the general applicability of this approach with experiments on handwritten digit data.
ReduNet: A White-box Deep Network from the Principle of Maximizing Rate Reduction
Chan, Kwan Ho Ryan, Yu, Yaodong, You, Chong, Qi, Haozhi, Wright, John, Ma, Yi
This work attempts to provide a plausible theoretical framework that aims to interpret modern deep (convolutional) networks from the principles of data compression and discriminative representation. We argue that for high-dimensional multi-class data, the optimal linear discriminative representation maximizes the coding rate difference between the whole dataset and the average of all the subsets. We show that the basic iterative gradient ascent scheme for optimizing the rate reduction objective naturally leads to a multi-layer deep network, named ReduNet, which shares common characteristics of modern deep networks. The deep layered architectures, linear and nonlinear operators, and even parameters of the network are all explicitly constructed layer-by-layer via forward propagation, although they are amenable to fine-tuning via back propagation. All components of so-obtained "white-box" network have precise optimization, statistical, and geometric interpretation. Moreover, all linear operators of the so-derived network naturally become multi-channel convolutions when we enforce classification to be rigorously shift-invariant. The derivation in the invariant setting suggests a trade-off between sparsity and invariance, and also indicates that such a deep convolution network is significantly more efficient to construct and learn in the spectral domain. Our preliminary simulations and experiments clearly verify the effectiveness of both the rate reduction objective and the associated ReduNet. All code and data are available at https://github.com/Ma-Lab-Berkeley. Keywords: rate reduction, linear discriminative representation, white-box deep network, multi-channel convolution, sparsity and invariance trade-off "What I cannot create, I do not understand."
Deep Networks from the Principle of Rate Reduction
Chan, Kwan Ho Ryan, Yu, Yaodong, You, Chong, Qi, Haozhi, Wright, John, Ma, Yi
This work attempts to interpret modern deep (convolutional) networks from the principles of rate reduction and (shift) invariant classification. We show that the basic iterative gradient ascent scheme for optimizing the rate reduction of learned features naturally leads to a multi-layer deep network, one iteration per layer. The layered architectures, linear and nonlinear operators, and even parameters of the network are all explicitly constructed layer-by-layer in a forward propagation fashion by emulating the gradient scheme. All components of this "white box" network have precise optimization, statistical, and geometric interpretation. This principled framework also reveals and justifies the role of multi-channel lifting and sparse coding in early stage of deep networks. Moreover, all linear operators of the so-derived network naturally become multi-channel convolutions when we enforce classification to be rigorously shift-invariant. The derivation also indicates that such a convolutional network is significantly more efficient to construct and learn in the spectral domain. Our preliminary simulations and experiments indicate that so constructed deep network can already learn a good discriminative representation even without any back propagation training. In recent years, various deep (convolution) network architectures such as AlexNet (Krizhevsky et al., 2012), VGG (Simonyan & Zisserman, 2015), ResNet (He et al., 2016), DenseNet (Huang et al., 2017), Recurrent CNN, LSTM (Hochreiter & Schmidhuber, 1997), Capsule Networks (Hinton et al., 2011), etc., have demonstrated very good performance in classification tasks of real-world datasets such as speeches or images. Nevertheless, almost all such networks are developed through years of empirical trial and error, including both their architectures/operators and the ways they are to be effectively trained. Some recent practices even take to the extreme by searching for effective network structures and training strategies through extensive random search techniques, such as Neural Architecture Search (Zoph & Le, 2017; Baker et al., 2017), AutoML (Hutter et al., 2019), and Learning to Learn (Andrychowicz et al., 2016).
Deep Networks and the Multiple Manifold Problem
Buchanan, Sam, Gilboa, Dar, Wright, John
We study the multiple manifold problem, a binary classification task modeled on applications in machine vision, in which a deep fully-connected neural network is trained to separate two low-dimensional submanifolds of the unit sphere. We provide an analysis of the one-dimensional case, proving for a simple manifold configuration that when the network depth $L$ is large relative to certain geometric and statistical properties of the data, the network width $n$ grows as a sufficiently large polynomial in $L$, and the number of i.i.d. samples from the manifolds is polynomial in $L$, randomly-initialized gradient descent rapidly learns to classify the two manifolds perfectly with high probability. Our analysis demonstrates concrete benefits of depth and width in the context of a practically-motivated model problem: the depth acts as a fitting resource, with larger depths corresponding to smoother networks that can more readily separate the class manifolds, and the width acts as a statistical resource, enabling concentration of the randomly-initialized network and its gradients. The argument centers around the neural tangent kernel and its role in the nonasymptotic analysis of training overparameterized neural networks; to this literature, we contribute essentially optimal rates of concentration for the neural tangent kernel of deep fully-connected networks, requiring width $n \gtrsim L\,\mathrm{poly}(d_0)$ to achieve uniform concentration of the initial kernel over a $d_0$-dimensional submanifold of the unit sphere $\mathbb{S}^{n_0-1}$, and a nonasymptotic framework for establishing generalization of networks trained in the NTK regime with structured data. The proof makes heavy use of martingale concentration to optimally treat statistical dependencies across layers of the initial random network. This approach should be of use in establishing similar results for other network architectures.
From Symmetry to Geometry: Tractable Nonconvex Problems
Zhang, Yuqian, Qu, Qing, Wright, John
As science and engineering have become increasingly data-driven, the role of optimization has expanded to touch almost every stage of the data analysis pipeline, from the signal and data acquisition to modeling and prediction. The optimization problems encountered in practice are often nonconvex. While challenges vary from problem to problem, one common source of nonconvexity is nonlinearity in the data or measurement model. Nonlinear models often exhibit symmetries, creating complicated, nonconvex objective landscapes, with multiple equivalent solutions. Nevertheless, simple methods (e.g., gradient descent) often perform surprisingly well in practice. The goal of this survey is to highlight a class of tractable nonconvex problems, which can be understood through the lens of symmetries. These problems exhibit a characteristic geometric structure: local minimizers are symmetric copies of a single ``ground truth'' solution, while other critical points occur at balanced superpositions of symmetric copies of the ground truth, and exhibit negative curvature in directions that break the symmetry. This structure enables efficient methods to obtain global minimizers. We discuss examples of this phenomenon arising from a wide range of problems in imaging, signal processing, and data analysis. We highlight the key role of symmetry in shaping the objective landscape and discuss the different roles of rotational and discrete symmetries. This area is rich with observed phenomena and open problems; we close by highlighting directions for future research.
Short-and-Sparse Deconvolution -- A Geometric Approach
Lau, Yenson, Qu, Qing, Kuo, Han-Wen, Zhou, Pengcheng, Zhang, Yuqian, Wright, John
Short-and-sparse deconvolution (SaSD) is the problem of extracting localized, recurring motifs in signals with spatial or temporal structure. Variants of this problem arise in applications such as image deblurring, microscopy, neural spike sorting, and more. The problem is challenging in both theory and practice, as natural optimization formulations are nonconvex. Moreover, practical deconvolution problems involve smooth motifs (kernels) whose spectra decay rapidly, resulting in poor conditioning and numerical challenges. This paper is motivated by recent theoretical advances, which characterize the optimization landscape of a particular nonconvex formulation of SaSD. This is used to derive a $provable$ algorithm which exactly solves certain non-practical instances of the SaSD problem. We leverage the key ideas from this theory (sphere constraints, data-driven initialization) to develop a $practical$ algorithm, which performs well on data arising from a range of application areas. We highlight key additional challenges posed by the ill-conditioning of real SaSD problems, and suggest heuristics (acceleration, continuation, reweighting) to mitigate them. Experiments demonstrate both the performance and generality of the proposed method.
Convolutional Phase Retrieval via Gradient Descent
Qu, Qing, Zhang, Yuqian, Eldar, Yonina C., Wright, John
We study the convolutional phase retrieval problem, of recovering an unknown signal $\mathbf x \in \mathbb C^n $ from $m$ measurements consisting of the magnitude of its cyclic convolution with a given kernel $\mathbf a \in \mathbb C^m $. This model is motivated by applications such as channel estimation, optics, and underwater acoustic communication, where the signal of interest is acted on by a given channel/filter, and phase information is difficult or impossible to acquire. We show that when $\mathbf a$ is random and the number of observations $m$ is sufficiently large, with high probability $\mathbf x$ can be efficiently recovered up to a global phase shift using a combination of spectral initialization and generalized gradient descent. The main challenge is coping with dependencies in the measurement operator. We overcome this challenge by using ideas from decoupling theory, suprema of chaos processes and the restricted isometry property of random circulant matrices, and recent analysis for alternating minimization methods.
Complete Dictionary Learning via $\ell^4$-Norm Maximization over the Orthogonal Group
Zhai, Yuexiang, Yang, Zitong, Liao, Zhenyu, Wright, John, Ma, Yi
This paper considers the fundamental problem of learning a complete (orthogonal) dictionary from samples of sparsely generated signals. Most existing methods solve the dictionary (and sparse representations) based on heuristic algorithms, usually without theoretical guarantees for either optimality or complexity. The recent $\ell^1$-minimization based methods do provide such guarantees but the associated algorithms recover the dictionary one column at a time. In this work, we propose a new formulation that maximizes the $\ell^4$-norm over the orthogonal group, to learn the entire dictionary. We prove that under a random data model, with nearly minimum sample complexity, the global optima of the $\ell^4$ norm are very close to signed permutations of the ground truth. Inspired by this observation, we give a conceptually simple and yet effective algorithm based on `matching, stretching, and projection' (MSP). The algorithm provably converges locally at a superlinear (cubic) rate and cost per iteration is merely an SVD. In addition to strong theoretical guarantees, experiments show that the new algorithm is significantly more efficient and effective than existing methods, including KSVD and $\ell^1$-based methods. Preliminary experimental results on real images clearly demonstrate advantages of so learned dictionary over classic PCA bases.