Work, Daniel
Field Deployment of Multi-Agent Reinforcement Learning Based Variable Speed Limit Controllers
Zhang, Yuhang, Zhang, Zhiyao, Quiñones-Grueiro, Marcos, Barbour, William, Weston, Clay, Biswas, Gautam, Work, Daniel
This article presents the first field deployment of a multi-agent reinforcement-learning (MARL) based variable speed limit (VSL) control system on the I-24 freeway near Nashville, Tennessee. We describe how we train MARL agents in a traffic simulator and directly deploy the simulation-based policy on a 17-mile stretch of Interstate 24 with 67 VSL controllers. We use invalid action masking and several safety guards to ensure the posted speed limits satisfy the real-world constraints from the traffic management center and the Tennessee Department of Transportation. Since the time of launch of the system through April, 2024, the system has made approximately 10,000,000 decisions on 8,000,000 trips. The analysis of the controller shows that the MARL policy takes control for up to 98% of the time without intervention from safety guards. The time-space diagrams of traffic speed and control commands illustrate how the algorithm behaves during rush hour. Finally, we quantify the domain mismatch between the simulation and real-world data and demonstrate the robustness of the MARL policy to this mismatch.
MARVEL: Multi-Agent Reinforcement-Learning for Large-Scale Variable Speed Limits
Zhang, Yuhang, Quinones-Grueiro, Marcos, Zhang, Zhiyao, Wang, Yanbing, Barbour, William, Biswas, Gautam, Work, Daniel
Variable speed limit (VSL) control is a promising traffic management strategy for enhancing safety and mobility. This work introduces MARVEL, a multi-agent reinforcement learning (MARL) framework for implementing large-scale VSL control on freeway corridors using only commonly available data. The agents learn through a reward structure that incorporates adaptability to traffic conditions, safety, and mobility; enabling coordination among the agents. The proposed framework scales to cover corridors with many gantries thanks to a parameter sharing among all VSL agents. The agents are trained in a microsimulation environment based on a short freeway stretch with 8 gantries spanning 7 miles and tested with 34 gantries spanning 17 miles of I-24 near Nashville, TN. MARVEL improves traffic safety by 63.4% compared to the no control scenario and enhances traffic mobility by 14.6% compared to a state-of-the-practice algorithm that has been deployed on I-24. An explainability analysis is undertaken to explore the learned policy under different traffic conditions and the results provide insights into the decision-making process of agents. Finally, we test the policy learned from the simulation-based experiments on real input data from I-24 to illustrate the potential deployment capability of the learned policy.
Detecting Socially Abnormal Highway Driving Behaviors via Recurrent Graph Attention Networks
Hu, Yue, Zhang, Yuhang, Wang, Yanbing, Work, Daniel
With the rapid development of Internet of Things technologies, the next generation traffic monitoring infrastructures are connected via the web, to aid traffic data collection and intelligent traffic management. One of the most important tasks in traffic is anomaly detection, since abnormal drivers can reduce traffic efficiency and cause safety issues. This work focuses on detecting abnormal driving behaviors from trajectories produced by highway video surveillance systems. Most of the current abnormal driving behavior detection methods focus on a limited category of abnormal behaviors that deal with a single vehicle without considering vehicular interactions. In this work, we consider the problem of detecting a variety of socially abnormal driving behaviors, i.e., behaviors that do not conform to the behavior of other nearby drivers. This task is complicated by the variety of vehicular interactions and the spatial-temporal varying nature of highway traffic. To solve this problem, we propose an autoencoder with a Recurrent Graph Attention Network that can capture the highway driving behaviors contextualized on the surrounding cars, and detect anomalies that deviate from learned patterns. Our model is scalable to large freeways with thousands of cars. Experiments on data generated from traffic simulation software show that our model is the only one that can spot the exact vehicle conducting socially abnormal behaviors, among the state-of-the-art anomaly detection models. We further show the performance on real world HighD traffic dataset, where our model detects vehicles that violate the local driving norms.