Wooters, Chuck
Modeling Consistency in a Speaker Independent Continuous Speech Recognition System
Konig, Yochai, Morgan, Nelson, Wooters, Chuck, Abrash, Victor, Cohen, Michael, Franco, Horacio
We would like to incorporate speaker-dependent consistencies, such as gender, in an otherwise speaker-independent speech recognition system. In this paper we discuss a Gender Dependent Neural Network (GDNN) which can be tuned for each gender, while sharing most of the speaker independent parameters. We use a classification network to help generate gender-dependent phonetic probabilities for a statistical (HMM) recognition system. The gender classification net predicts the gender with high accuracy, 98.3% on a Resource Management test set. However, the integration of the GDNN into our hybrid HMM-neural network recognizer provided an improvement in the recognition score that is not statistically significant on a Resource Management test set.
Modeling Consistency in a Speaker Independent Continuous Speech Recognition System
Konig, Yochai, Morgan, Nelson, Wooters, Chuck, Abrash, Victor, Cohen, Michael, Franco, Horacio
We would like to incorporate speaker-dependent consistencies, such as gender, in an otherwise speaker-independent speech recognition system. In this paper we discuss a Gender Dependent Neural Network (GDNN) which can be tuned for each gender, while sharing most of the speaker independent parameters. We use a classification network to help generate gender-dependent phonetic probabilities for a statistical (HMM) recognition system. The gender classification net predicts the gender with high accuracy, 98.3% on a Resource Management test set. However, the integration of the GDNN into our hybrid HMM-neural network recognizer provided an improvement in the recognition score that is not statistically significant on a Resource Management test set.
Modeling Consistency in a Speaker Independent Continuous Speech Recognition System
Konig, Yochai, Morgan, Nelson, Wooters, Chuck, Abrash, Victor, Cohen, Michael, Franco, Horacio
We would like to incorporate speaker-dependent consistencies, such as gender, in an otherwise speaker-independent speech recognition system. In this paper we discuss a Gender Dependent Neural Network (GDNN) which can be tuned for each gender, while sharing most of the speaker independent parameters. We use a classification network to help generate gender-dependent phonetic probabilities for a statistical (HMM) recognition system.The gender classification net predicts the gender with high accuracy, 98.3% on a Resource Management test set. However, the integration ofthe GDNN into our hybrid HMM-neural network recognizer provided an improvement in the recognition score that is not statistically significant on a Resource Management test set.
Connectionist Approaches to the Use of Markov Models for Speech Recognition
Bourlard, Hervé, Morgan, Nelson, Wooters, Chuck
Previous work has shown the ability of Multilayer Perceptrons (MLPs) to estimate emission probabilities for Hidden Markov Models (HMMs). The advantages of a speech recognition system incorporating both MLPs and HMMs are the best discrimination and the ability to incorporate multiple sources of evidence (features, temporal context) without restrictive assumptions of distributions or statistical independence. This paper presents results on the speaker-dependent portion of DARPA's English language Resource Management database. Results support the previously reported utility of MLP probability estimation for continuous speech recognition. An additional approach we are pursuing is to use MLPs as nonlinear predictors for autoregressive HMMs. While this is shown to be more compatible with the HMM formalism, it still suffers from several limitations. This approach is generalized to take account of time correlation between successive observations, without any restrictive assumptions about the driving noise. 1 INTRODUCTION We have been working on continuous speech recognition using moderately large vocabularies (1000 words) [1,2].