Goto

Collaborating Authors

 Wood-Doughty, Zach


Can You Trust LLM Judgments? Reliability of LLM-as-a-Judge

arXiv.org Artificial Intelligence

Large Language Models (LLMs) have become increasingly powerful and ubiquitous, but their stochastic nature poses challenges to the reliability of their outputs. While deterministic settings can improve consistency, they do not guarantee reliability, as a single sample from the model's probability distribution can still be misleading. Building upon the concept of LLM-as-a-judge, we introduce a novel framework for rigorously evaluating the reliability of LLM judgments, leveraging McDonald's omega. We evaluate the reliability of LLMs when judging the outputs of other LLMs on standard single-turn and multi-turn benchmarks, simultaneously investigating the impact of temperature on reliability. By analyzing these results, we demonstrate the limitations of fixed randomness and the importance of considering multiple samples, which we show has significant implications for downstream applications. Our findings highlight the need for a nuanced understanding of LLM reliability and the potential risks associated with over-reliance on single-shot evaluations. This work provides a crucial step towards building more trustworthy and reliable LLM-based systems and applications.


Reliability of Topic Modeling

arXiv.org Artificial Intelligence

Topic models allow researchers to extract latent factors from text data and use those variables in downstream statistical analyses. However, these methodologies can vary significantly due to initialization differences, randomness in sampling procedures, or noisy data. Reliability of these methods is of particular concern as many researchers treat learned topic models as ground truth for subsequent analyses. In this work, we show that the standard practice for quantifying topic model reliability fails to capture essential aspects of the variation in two widely-used topic models. Drawing from a extensive literature on measurement theory, we provide empirical and theoretical analyses of three other metrics for evaluating the reliability of topic models. On synthetic and real-world data, we show that McDonald's $\omega$ provides the best encapsulation of reliability. This metric provides an essential tool for validation of topic model methodologies that should be a standard component of any topic model-based research.


Controlling for Unobserved Confounding with Large Language Model Classification of Patient Smoking Status

arXiv.org Artificial Intelligence

Causal understanding is a fundamental goal of evidence-based medicine. When randomization is impossible, causal inference methods allow the estimation of treatment effects from retrospective analysis of observational data. However, such analyses rely on a number of assumptions, often including that of no unobserved confounding. In many practical settings, this assumption is violated when important variables are not explicitly measured in the clinical record. Prior work has proposed to address unobserved confounding with machine learning by imputing unobserved variables and then correcting for the classifier's mismeasurement. When such a classifier can be trained and the necessary assumptions are met, this method can recover an unbiased estimate of a causal effect. However, such work has been limited to synthetic data, simple classifiers, and binary variables. This paper extends this methodology by using a large language model trained on clinical notes to predict patients' smoking status, which would otherwise be an unobserved confounder. We then apply a measurement error correction on the categorical predicted smoking status to estimate the causal effect of transthoracic echocardiography on mortality in the MIMIC dataset.


Segment Anything Model is a Good Teacher for Local Feature Learning

arXiv.org Artificial Intelligence

Local feature detection and description play an important role in many computer vision tasks, which are designed to detect and describe keypoints in "any scene" and "any downstream task". Data-driven local feature learning methods need to rely on pixel-level correspondence for training, which is challenging to acquire at scale, thus hindering further improvements in performance. In this paper, we propose SAMFeat to introduce SAM (segment anything model), a fundamental model trained on 11 million images, as a teacher to guide local feature learning and thus inspire higher performance on limited datasets. To do so, first, we construct an auxiliary task of Pixel Semantic Relational Distillation (PSRD), which distillates feature relations with category-agnostic semantic information learned by the SAM encoder into a local feature learning network, to improve local feature description using semantic discrimination. Second, we develop a technique called Weakly Supervised Contrastive Learning Based on Semantic Grouping (WSC), which utilizes semantic groupings derived from SAM as weakly supervised signals, to optimize the metric space of local descriptors. Third, we design an Edge Attention Guidance (EAG) to further improve the accuracy of local feature detection and description by prompting the network to pay more attention to the edge region guided by SAM.


Causal Inference in Natural Language Processing: Estimation, Prediction, Interpretation and Beyond

arXiv.org Artificial Intelligence

A fundamental goal of scientific research is to learn about causal relationships. However, despite its critical role in the life and social sciences, causality has not had the same importance in Natural Language Processing (NLP), which has traditionally placed more emphasis on predictive tasks. This distinction is beginning to fade, with an emerging area of interdisciplinary research at the convergence of causal inference and language processing. Still, research on causality in NLP remains scattered across domains without unified definitions, benchmark datasets and clear articulations of the challenges and opportunities in the application of causal inference to the textual domain, with its unique properties. In this survey, we consolidate research across academic areas and situate it in the broader NLP landscape. We introduce the statistical challenge of estimating causal effects with text, encompassing settings where text is used as an outcome, treatment, or to address confounding. In addition, we explore potential uses of causal inference to improve the robustness, fairness, and interpretability of NLP models. We thus provide a unified overview of causal inference for the NLP community.