Goto

Collaborating Authors

 Wong, Wilson


Determining the Unithood of Word Sequences using Mutual Information and Independence Measure

arXiv.org Artificial Intelligence

Most works related to unithood were conducted as part of a larger effort for the determination of termhood. Consequently, the number of independent research that study the notion of unithood and produce dedicated techniques for measuring unithood is extremely small. We propose a new approach, independent of any influences of termhood, that provides dedicated measures to gather linguistic evidence from parsed text and statistical evidence from Google search engine for the measurement of unithood. Our evaluations revealed a precision and recall of 98.68% and 91.82% respectively with an accuracy at 95.42% in measuring the unithood of 1005 test cases.


Determining the Unithood of Word Sequences using a Probabilistic Approach

arXiv.org Artificial Intelligence

Most research related to unithood were conducted as part of a larger effort for the determination of termhood. Consequently, novelties are rare in this small sub-field of term extraction. In addition, existing work were mostly empirically motivated and derived. We propose a new probabilistically-derived measure, independent of any influences of termhood, that provides dedicated measures to gather linguistic evidence from parsed text and statistical evidence from Google search engine for the measurement of unithood. Our comparative study using 1,825 test cases against an existing empirically-derived function revealed an improvement in terms of precision, recall and accuracy.


Practical Approach to Knowledge-based Question Answering with Natural Language Understanding and Advanced Reasoning

arXiv.org Artificial Intelligence

This research hypothesized that a practical approach in the form of a solution framework known as Natural Language Understanding and Reasoning for Intelligence (NaLURI), which combines full-discourse natural language understanding, powerful representation formalism capable of exploiting ontological information and reasoning approach with advanced features, will solve the following problems without compromising practicality factors: 1) restriction on the nature of question and response, and 2) limitation to scale across domains and to real-life natural language text.