Not enough data to create a plot.
Try a different view from the menu above.
Wong, Kam-Fai
FReM: A Flexible Reasoning Mechanism for Balancing Quick and Slow Thinking in Long-Context Question Answering
Zhao, Zhengyi, Zhang, Shubo, Wang, Zezhong, Liang, Bin, Li, Binyang, Wong, Kam-Fai
Long-context question-answering (LCQA) systems have greatly benefited from the powerful reasoning capabilities of large language models (LLMs), which can be categorized into slow and quick reasoning modes. However, both modes have their limitations. Slow thinking generally leans to explore every possible reasoning path, which leads to heavy overthinking and wastes time. Quick thinking usually relies on pattern matching rather than truly understanding the query logic, which misses proper understanding. To address these issues, we propose FReM: Flexible Reasoning Mechanism, a method that adjusts reasoning depth according to the complexity of each question. Specifically, FReM leverages synthetic reference QA examples to provide an explicit chain of thought, enabling efficient handling of simple queries while allowing deeper reasoning for more complex ones. By doing so, FReM helps quick-thinking models move beyond superficial pattern matching and narrows the reasoning space for slow-thinking models to avoid unnecessary exploration. Experiments on seven QA datasets show that FReM improves reasoning accuracy and scalability, particularly for complex multihop questions, indicating its potential to advance LCQA methodologies.
EventWeave: A Dynamic Framework for Capturing Core and Supporting Events in Dialogue Systems
Zhao, Zhengyi, Zhang, Shubo, Du, Yiming, Liang, Bin, Wang, Baojun, Li, Zhongyang, Li, Binyang, Wong, Kam-Fai
Existing large language models (LLMs) have shown remarkable progress in dialogue systems. However, many approaches still overlook the fundamental role of events throughout multi-turn interactions, leading to \textbf{incomplete context tracking}. Without tracking these events, dialogue systems often lose coherence and miss subtle shifts in user intent, causing disjointed responses. To bridge this gap, we present \textbf{EventWeave}, an event-centric framework that identifies and updates both core and supporting events as the conversation unfolds. Specifically, we organize these events into a dynamic event graph, which represents the interplay between \textbf{core events} that shape the primary idea and \textbf{supporting events} that provide critical context during the whole dialogue. By leveraging this dynamic graph, EventWeave helps models focus on the most relevant events when generating responses, thus avoiding repeated visits of the entire dialogue history. Experimental results on two benchmark datasets show that EventWeave improves response quality and event relevance without fine-tuning.
DAST: Difficulty-Aware Self-Training on Large Language Models
Xue, Boyang, Zhu, Qi, Wang, Hongru, Wang, Rui, Wang, Sheng, Xu, Hongling, Mi, Fei, Wang, Yasheng, Shang, Lifeng, Liu, Qun, Wong, Kam-Fai
Present Large Language Models (LLM) self-training methods always under-sample on challenging queries, leading to inadequate learning on difficult problems which limits LLMs' ability. Therefore, this work proposes a difficulty-aware self-training (DAST) framework that focuses on improving both the quantity and quality of self-generated responses on challenging queries during self-training. DAST is specified in three components: 1) sampling-based difficulty level estimation, 2) difficulty-aware data augmentation, and 3) the self-training algorithm using SFT and DPO respectively. Experiments on mathematical tasks demonstrate the effectiveness and generalization of DAST, highlighting the critical role of difficulty-aware strategies in advancing LLM self-training.
PEARL: Towards Permutation-Resilient LLMs
Chen, Liang, Shen, Li, Deng, Yang, Zhao, Xiaoyan, Liang, Bin, Wong, Kam-Fai
The in-context learning (ICL) capability of large language models (LLMs) enables them to perform challenging tasks using provided demonstrations. However, ICL is highly sensitive to the ordering of demonstrations, leading to instability in predictions. This paper shows that this vulnerability can be exploited to design a natural attack - difficult for model providers to detect - that achieves nearly 80% success rate on LLaMA-3 by simply permuting the demonstrations. Existing mitigation methods primarily rely on post-processing and fail to enhance the model's inherent robustness to input permutations, raising concerns about safety and reliability of LLMs. To address this issue, we propose Permutation-resilient learning (PEARL), a novel framework based on distributionally robust optimization (DRO), which optimizes model performance against the worst-case input permutation. Specifically, PEARL consists of a permutation-proposal network (P-Net) and the LLM. The P-Net generates the most challenging permutations by treating it as an optimal transport problem, which is solved using an entropy-constrained Sinkhorn algorithm. Through minimax optimization, the P-Net and the LLM iteratively optimize against each other, progressively improving the LLM's robustness. Experiments on synthetic pre-training and real-world instruction tuning tasks demonstrate that PEARL effectively mitigates permutation attacks and enhances performance. Notably, despite being trained on fewer shots and shorter contexts, PEARL achieves performance gains of up to 40% when scaled to many-shot and long-context scenarios, highlighting its efficiency and generalization capabilities.
Understanding and Mitigating the Bias Inheritance in LLM-based Data Augmentation on Downstream Tasks
Li, Miaomiao, Chen, Hao, Wang, Yang, Zhu, Tingyuan, Zhang, Weijia, Zhu, Kaijie, Wong, Kam-Fai, Wang, Jindong
Generating synthetic datasets via large language models (LLMs) themselves has emerged as a promising approach to improve LLM performance. However, LLMs inherently reflect biases present in their training data, leading to a critical challenge: when these models generate synthetic data for training, they may propagate and amplify their inherent biases that can significantly impact model fairness and robustness on downstream tasks--a phenomenon we term bias inheritance. This work presents the first systematic investigation in understanding, analyzing, and mitigating bias inheritance. We study this problem by fine-tuning LLMs with a combined dataset consisting of original and LLM-augmented data, where bias ratio represents the proportion of augmented data. Through systematic experiments across 10 classification and generation tasks, we analyze how 6 different types of biases manifest at varying bias ratios. Our results reveal that bias inheritance has nuanced effects on downstream tasks, influencing both classification tasks and generation tasks differently. Then, our analysis identifies three key misalignment factors: misalignment of values, group data, and data distributions. Based on these insights, we propose three mitigation strategies: token-based, mask-based, and loss-based approaches. Experiments demonstrate that these strategies also work differently on various tasks and bias, indicating the substantial challenges to fully mitigate bias inheritance. We hope this work can provide valuable insights to the research of LLM data augmentation.
UAlign: Leveraging Uncertainty Estimations for Factuality Alignment on Large Language Models
Xue, Boyang, Mi, Fei, Zhu, Qi, Wang, Hongru, Wang, Rui, Wang, Sheng, Yu, Erxin, Hu, Xuming, Wong, Kam-Fai
Despite demonstrating impressive capabilities, Large Language Models (LLMs) still often struggle to accurately express the factual knowledge they possess, especially in cases where the LLMs' knowledge boundaries are ambiguous. To improve LLMs' factual expressions, we propose the UAlign framework, which leverages Uncertainty estimations to represent knowledge boundaries, and then explicitly incorporates these representations as input features into prompts for LLMs to Align with factual knowledge. First, we prepare the dataset on knowledge question-answering (QA) samples by calculating two uncertainty estimations, including confidence score and semantic entropy, to represent the knowledge boundaries for LLMs. Subsequently, using the prepared dataset, we train a reward model that incorporates uncertainty estimations and then employ the Proximal Policy Optimization (PPO) algorithm for factuality alignment on LLMs. Experimental results indicate that, by integrating uncertainty representations in LLM alignment, the proposed UAlign can significantly enhance the LLMs' capacities to confidently answer known questions and refuse unknown questions on both in-domain and out-of-domain tasks, showing reliability improvements and good generalizability over various prompt- and training-based baselines.
Steering Knowledge Selection Behaviours in LLMs via SAE-Based Representation Engineering
Zhao, Yu, Devoto, Alessio, Hong, Giwon, Du, Xiaotang, Gema, Aryo Pradipta, Wang, Hongru, He, Xuanli, Wong, Kam-Fai, Minervini, Pasquale
Large language models (LLMs) can store a significant amount of factual knowledge in their parameters. However, their parametric knowledge may conflict with the information provided in the context -- this phenomenon, known as \emph{context-memory knowledge conflicts}, can lead to undesirable model behaviour, such as reliance on outdated or incorrect information. Analysing the internal activations of LLMs, we find that they can internally register the signals of knowledge conflict at mid-layers. Such signals allow us to detect whether a knowledge conflict occurs and use \emph{inference-time} intervention strategies to resolve it. In this work, we propose \textsc{SpARE}, a \emph{training-free} representation engineering method that uses pre-trained sparse auto-encoders (SAEs) to control the knowledge selection behaviour of LLMs. \textsc{SpARE} identifies the functional features that control the knowledge selection behaviours and applies them to edit the internal activations of LLMs at inference time. Our experimental results show that \textsc{SpARE} can effectively control the usage of either knowledge source to resolve knowledge conflict in open-domain question-answering tasks, surpassing existing representation engineering methods ($+10\%$) as well as contrastive decoding methods ($+15\%$).
ToolFlow: Boosting LLM Tool-Calling Through Natural and Coherent Dialogue Synthesis
Wang, Zezhong, Zeng, Xingshan, Liu, Weiwen, Li, Liangyou, Wang, Yasheng, Shang, Lifeng, Jiang, Xin, Liu, Qun, Wong, Kam-Fai
Supervised fine-tuning (SFT) is a common method to enhance the tool calling capabilities of Large Language Models (LLMs), with the training data often being synthesized. The current data synthesis process generally involves sampling a set of tools, formulating a requirement based on these tools, and generating the call statements. However, tools sampled randomly lack relevance, making them difficult to combine and thus reducing the diversity of the data. Additionally, current work overlooks the coherence between turns of dialogues, leading to a gap between the synthesized data and real-world scenarios. To address these issues, we propose a Graph-based Sampling strategy to sample more relevant tool combinations, and a Planned-generation strategy to create plans that guide the synthesis of coherent dialogues. We integrate these two strategies and enable multiple agents to synthesize the dialogue data interactively, resulting in our tool-calling data synthesis pipeline ToolFlow. Data quality assessments demonstrate improvements in the naturalness and coherence of our synthesized dialogues. Finally, we apply SFT on LLaMA-3.1-8B using 8,000 synthetic dialogues generated with ToolFlow. Results show that the model achieves tool-calling performance comparable to or even surpassing GPT-4, while maintaining strong general capabilities.
Analysing the Residual Stream of Language Models Under Knowledge Conflicts
Zhao, Yu, Du, Xiaotang, Hong, Giwon, Gema, Aryo Pradipta, Devoto, Alessio, Wang, Hongru, He, Xuanli, Wong, Kam-Fai, Minervini, Pasquale
Large language models (LLMs) can store a significant amount of factual knowledge in their parameters. However, their parametric knowledge may conflict with the information provided in the context. Such conflicts can lead to undesirable model behaviour, such as reliance on outdated or incorrect information. In this work, we investigate whether LLMs can identify knowledge conflicts and whether it is possible to know which source of knowledge the model will rely on by analysing the residual stream of the LLM. Through probing tasks, we find that LLMs can internally register the signal of knowledge conflict in the residual stream, which can be accurately detected by probing the intermediate model activations. This allows us to detect conflicts within the residual stream before generating the answers without modifying the input or model parameters. Moreover, we find that the residual stream shows significantly different patterns when the model relies on contextual knowledge versus parametric knowledge to resolve conflicts. This pattern can be employed to estimate the behaviour of LLMs when conflict happens and prevent unexpected answers before producing the answers. Our analysis offers insights into how LLMs internally manage knowledge conflicts and provides a foundation for developing methods to control the knowledge selection processes.
MlingConf: A Comprehensive Study of Multilingual Confidence Estimation on Large Language Models
Xue, Boyang, Wang, Hongru, Wang, Rui, Wang, Sheng, Wang, Zezhong, Du, Yiming, Liang, Bin, Wong, Kam-Fai
The tendency of Large Language Models (LLMs) to generate hallucinations raises concerns regarding their reliability. Therefore, confidence estimations indicating the extent of trustworthiness of the generations become essential. However, current LLM confidence estimations in languages other than English remain underexplored. This paper addresses this gap by introducing a comprehensive investigation of Multilingual Confidence estimation (MlingConf) on LLMs, focusing on both language-agnostic (LA) and language-specific (LS) tasks to explore the performance and language dominance effects of multilingual confidence estimations on different tasks. The benchmark comprises four meticulously checked and human-evaluate high-quality multilingual datasets for LA tasks and one for the LS task tailored to specific social, cultural, and geographical contexts of a language. Our experiments reveal that on LA tasks English exhibits notable linguistic dominance in confidence estimations than other languages, while on LS tasks, using question-related language to prompt LLMs demonstrates better linguistic dominance in multilingual confidence estimations. The phenomena inspire a simple yet effective native-tone prompting strategy by employing language-specific prompts for LS tasks, effectively improving LLMs' reliability and accuracy on LS tasks.