Goto

Collaborating Authors

 Won, John


FedSelect: Customized Selection of Parameters for Fine-Tuning during Personalized Federated Learning

arXiv.org Artificial Intelligence

Recent advancements in federated learning (FL) seek to increase client-level performance by fine-tuning client parameters on local data or personalizing architectures for the local task. Existing methods for such personalization either prune a global model or fine-tune a global model on a local client distribution. However, these existing methods either personalize at the expense of retaining important global knowledge, or predetermine network layers for fine-tuning, resulting in suboptimal storage of global knowledge within client models. Enlightened by the lottery ticket hypothesis, we first introduce a hypothesis for finding optimal client subnetworks to locally fine-tune while leaving the rest of the parameters frozen. We then propose a novel FL framework, FedSelect, using this procedure that directly personalizes both client subnetwork structure and parameters, via the simultaneous discovery of optimal parameters for personalization and the rest of parameters for global aggregation during training. We show that this method achieves promising results on CIFAR-10.


Self-Supervised Predictive Coding with Multimodal Fusion for Patient Deterioration Prediction in Fine-grained Time Resolution

arXiv.org Artificial Intelligence

Accurate time prediction of patients' critical events is crucial in urgent scenarios where timely decision-making is important. Though many studies have proposed automatic prediction methods using Electronic Health Records (EHR), their coarse-grained time resolutions limit their practical usage in urgent environments such as the emergency department (ED) and intensive care unit (ICU). Therefore, in this study, we propose an hourly prediction method based on self-supervised predictive coding and multi-modal fusion for two critical tasks: mortality and vasopressor need prediction. Through extensive experiments, we prove significant performance gains from both multi-modal fusion and self-supervised predictive regularization, most notably in far-future prediction, which becomes especially important in practice. Our uni-modal/bi-modal/bi-modal self-supervision scored 0.846/0.877/0.897