Goto

Collaborating Authors

 Wolgast, Thomas


Learning the Optimal Power Flow: Environment Design Matters

arXiv.org Artificial Intelligence

To solve the optimal power flow (OPF) problem, reinforcement learning (RL) emerges as a promising new approach. However, the RL-OPF literature is strongly divided regarding the exact formulation of the OPF problem as an RL environment. In this work, we collect and implement diverse environment design decisions from the literature regarding training data, observation space, episode definition, and reward function choice. In an experimental analysis, we show the significant impact of these environment design options on RL-OPF training performance. Further, we derive some first recommendations regarding the choice of these design decisions. The created environment framework is fully open-source and can serve as a benchmark for future research in the RL-OPF field.


Approximating Energy Market Clearing and Bidding With Model-Based Reinforcement Learning

arXiv.org Artificial Intelligence

Energy market rules should incentivize market participants to behave in a market and grid conform way. However, they can also provide incentives for undesired and unexpected strategies if the market design is flawed. Multi-agent Reinforcement learning (MARL) is a promising new approach to predicting the expected profit-maximizing behavior of energy market participants in simulation. However, reinforcement learning requires many interactions with the system to converge, and the power system environment often consists of extensive computations, e.g., optimal power flow (OPF) calculation for market clearing. To tackle this complexity, we provide a model of the energy market to a basic MARL algorithm in the form of a learned OPF approximation and explicit market rules. The learned OPF surrogate model makes an explicit solving of the OPF completely unnecessary. Our experiments demonstrate that the model additionally reduces training time by about one order of magnitude but at the cost of a slightly worse performance. Potential applications of our method are market design, more realistic modeling of market participants, and analysis of manipulative behavior.


ANALYSE -- Learning to Attack Cyber-Physical Energy Systems With Intelligent Agents

arXiv.org Artificial Intelligence

The ongoing penetration of energy systems with information and communications technology (ICT) and the introduction of new markets increase the potential for malicious or profit-driven attacks that endanger system stability. To ensure security-of-supply, it is necessary to analyze such attacks and their underlying vulnerabilities, to develop countermeasures and improve system design. We propose ANALYSE, a machine-learning-based software suite to let learning agents autonomously find attacks in cyber-physical energy systems, consisting of the power system, ICT, and energy markets. ANALYSE is a modular, configurable, and self-documenting framework designed to find yet unknown attack types and to reproduce many known attack strategies in cyber-physical energy systems from the scientific literature.


Analyzing Power Grid, ICT, and Market Without Domain Knowledge Using Distributed Artificial Intelligence

arXiv.org Artificial Intelligence

Modern cyber-physical systems (CPS), such as our energy infrastructure, are becoming increasingly complex: An ever-higher share of Artificial Intelligence (AI)-based technologies use the Information and Communication Technology (ICT) facet of energy systems for operation optimization, cost efficiency, and to reach CO2 goals worldwide. At the same time, markets with increased flexibility and ever shorter trade horizons enable the multi-stakeholder situation that is emerging in this setting. These systems still form critical infrastructures that need to perform with highest reliability. However, today's CPS are becoming too complex to be analyzed in the traditional monolithic approach, where each domain, e.g., power grid and ICT as well as the energy market, are considered as separate entities while ignoring dependencies and side-effects. To achieve an overall analysis, we introduce the concept for an application of distributed artificial intelligence as a self-adaptive analysis tool that is able to analyze the dependencies between domains in CPS by attacking them. It eschews pre-configured domain knowledge, instead exploring the CPS domains for emergent risk situations and exploitable loopholes in codices, with a focus on rational market actors that exploit the system while still following the market rules.