Wolfgang Maass
Long short-term memory and Learning-to-learn in networks of spiking neurons
Guillaume Bellec, Darjan Salaj, Anand Subramoney, Robert Legenstein, Wolfgang Maass
Recurrent networks of spiking neurons (RSNNs) underlie the astounding computing and learning capabilities of the brain. But computing and learning capabilities of RSNN models have remained poor, at least in comparison with artificial neural networks (ANNs). We address two possible reasons for that. One is that RSNNs in the brain are not randomly connected or designed according to simple rules, and they do not start learning as a tabula rasa network. Rather, RSNNs in the brain were optimized for their tasks through evolution, development, and prior experience. Details of these optimization processes are largely unknown. But their functional contribution can be approximated through powerful optimization methods, such as backpropagation through time (BPTT). A second major mismatch between RSNNs in the brain and models is that the latter only show a small fraction of the dynamics of neurons and synapses in the brain. We include neurons in our RSNN model that reproduce one prominent dynamical process of biological neurons that takes place at the behaviourally relevant time scale of seconds: neuronal adaptation.
Replacing supervised classification learning by Slow Feature Analysis in spiking neural networks
Stefan Klampfl, Wolfgang Maass
It is open how neurons in the brain are able to learn without supervision to discriminate between spatio-temporal firing patterns of presynaptic neurons. We show that a known unsupervised learning algorithm, Slow Feature Analysis (SFA), is able to acquire the classification capability of Fisher's Linear Discriminant (FLD), a powerful algorithm for supervised learning, if temporally adjacent samples are likely to be from the same class. We also demonstrate that it enables linear readout neurons of cortical microcircuits to learn the detection of repeating firing patterns within a stream of spike trains with the same firing statistics, as well as discrimination of spoken digits, in an unsupervised manner.