Goto

Collaborating Authors

 Wolf, Ádám


Accelerating Discovery in Natural Science Laboratories with AI and Robotics: Perspectives and Challenges from the 2024 IEEE ICRA Workshop, Yokohama, Japan

arXiv.org Artificial Intelligence

Fundamental breakthroughs across many scientific disciplines are becoming increasingly rare (1). At the same time, challenges related to the reproducibility and scalability of experiments, especially in the natural sciences (2,3), remain significant obstacles. For years, automating scientific experiments has been viewed as the key to solving this problem. However, existing solutions are often rigid and complex, designed to address specific experimental tasks with little adaptability to protocol changes. With advancements in robotics and artificial intelligence, new possibilities are emerging to tackle this challenge in a more flexible and human-centric manner.


Assessment of the Utilization of Quadruped Robots in Pharmaceutical Research and Development Laboratories

arXiv.org Artificial Intelligence

Drug development is becoming more and more complex and resource-intensive. To reduce the costs and the time-to-market, the pharmaceutical industry employs cutting-edge automation solutions. Supportive robotics technologies, such as stationary and mobile manipulators, exist in various laboratory settings. However, they still lack the mobility and dexterity to navigate and operate in human-centered environments. We evaluate the feasibility of quadruped robots for the specific use case of remote inspection, utilizing the out-of-the-box capabilities of Boston Dynamics' Spot platform. We also provide an outlook on the newest technological advancements and the future applications these are anticipated to enable.


Towards Robotic Laboratory Automation Plug & Play: Survey and Concept Proposal on Teaching-free Robot Integration with the LAPP Digital Twin

arXiv.org Artificial Intelligence

The Laboratory Automation Plug & Play (LAPP) framework is an over-arching reference architecture concept for the integration of robots in life science laboratories. The plug & play nature lies in the fact that manual configuration is not required, including the teaching of the robots. In this paper a digital twin (DT) based concept is proposed that outlines the types of information that have to be provided for each relevant component of the system. In particular, for the devices interfacing with the robot, the robot positions have to be defined beforehand in a device-attached coordinate system (CS) by the vendor. This CS has to be detectable by the vision system of the robot by means of optical markers placed on the front side of the device. With that, the robot is capable of tending the machine by performing the pick-and-place type transportation of standard sample carriers. This basic use case is the primary scope of the LAPP-DT framework. The hardware scope is limited to simple benchtop and mobile manipulators with parallel grippers at this stage. This paper first provides an overview of relevant literature and state-of-the-art solutions, after which it outlines the framework on the conceptual level, followed by the specification of the relevant DT parameters for the robot, for the devices and for the facility. Finally, appropriate technologies and strategies are identified for the implementation.