Goto

Collaborating Authors

 Wolczynski, Nicholas


The Value of AI Advice: Personalized and Value-Maximizing AI Advisors Are Necessary to Reliably Benefit Experts and Organizations

arXiv.org Artificial Intelligence

Despite advances in AI's performance and interpretability, AI advisors can undermine experts' decisions and increase the time and effort experts must invest to make decisions. Consequently, AI systems deployed in high-stakes settings often fail to consistently add value across contexts and can even diminish the value that experts alone provide. Beyond harm in specific domains, such outcomes impede progress in research and practice, underscoring the need to understand when and why different AI advisors add or diminish value. To bridge this gap, we stress the importance of assessing the value AI advice brings to real-world contexts when designing and evaluating AI advisors. Building on this perspective, we characterize key pillars -- pathways through which AI advice impacts value -- and develop a framework that incorporates these pillars to create reliable, personalized, and value-adding advisors. Our results highlight the need for system-level, value-driven development of AI advisors that advise selectively, are tailored to experts' unique behaviors, and are optimized for context-specific trade-offs between decision improvements and advising costs. They also reveal how the lack of inclusion of these pillars in the design of AI advising systems may be contributing to the failures observed in practical applications.


Learning to Advise Humans in High-Stakes Settings

arXiv.org Artificial Intelligence

Expert decision-makers (DMs) in high-stakes AI-assisted decision-making (AIaDM) settings receive and reconcile recommendations from AI systems before making their final decisions. We identify distinct properties of these settings which are key to developing AIaDM models that effectively benefit team performance. First, DMs incur reconciliation costs from exerting decision-making resources (e.g., time and effort) when reconciling AI recommendations that contradict their own judgment. Second, DMs in AIaDM settings exhibit algorithm discretion behavior (ADB), i.e., an idiosyncratic tendency to imperfectly accept or reject algorithmic recommendations for any given decision task. The human's reconciliation costs and imperfect discretion behavior introduce the need to develop AI systems which (1) provide recommendations selectively, (2) leverage the human partner's ADB to maximize the team's decision accuracy while regularizing for reconciliation costs, and (3) are inherently interpretable. We refer to the task of developing AI to advise humans in AIaDM settings as learning to advise and we address this task by first introducing the AI-assisted Team (AIaT)-Learning Framework. We instantiate our framework to develop TeamRules (TR): an algorithm that produces rule-based models and recommendations for AIaDM settings. TR is optimized to selectively advise a human and to trade-off reconciliation costs and team accuracy for a given environment by leveraging the human partner's ADB. Evaluations on synthetic and real-world benchmark datasets with a variety of simulated human accuracy and discretion behaviors show that TR robustly improves the team's objective across settings over interpretable, rule-based alternatives.