Wołczyk, Maciej
Seeing Through Their Eyes: Evaluating Visual Perspective Taking in Vision Language Models
Góral, Gracjan, Ziarko, Alicja, Nauman, Michal, Wołczyk, Maciej
Visual perspective-taking (VPT), the ability to understand the viewpoint of another person, enables individuals to anticipate the actions of other people. For instance, a driver can avoid accidents by assessing what pedestrians see. Humans typically develop this skill in early childhood, but it remains unclear whether the recently emerging Vision Language Models (VLMs) possess such capability. Furthermore, as these models are increasingly deployed in the real world, understanding how they perform nuanced tasks like VPT becomes essential. In this paper, we introduce two manually curated datasets, Isle-Bricks and Isle-Dots for testing VPT skills, and we use it to evaluate 12 commonly used VLMs. Across all models, we observe a significant performance drop when perspective-taking is required. Additionally, we find performance in object detection tasks is poorly correlated with performance on VPT tasks, suggesting that the existing benchmarks might not be sufficient to understand this problem. The code and the dataset will be available at https://sites.google.com/view/perspective-taking
State Soup: In-Context Skill Learning, Retrieval and Mixing
Pióro, Maciej, Wołczyk, Maciej, Pascanu, Razvan, von Oswald, Johannes, Sacramento, João
A new breed of gated-linear recurrent neural networks has reached state-of-the-art performance on a range of sequence modeling problems. Such models naturally handle long sequences efficiently, as the cost of processing a new input is independent of sequence length. Here, we explore another advantage of these stateful sequence models, inspired by the success of model merging through parameter interpolation. Building on parallels between fine-tuning and in-context learning, we investigate whether we can treat internal states as task vectors that can be stored, retrieved, and then linearly combined, exploiting the linearity of recurrence. We study this form of fast model merging on Mamba-2.8b, a pretrained recurrent model, and present preliminary evidence that simple linear state interpolation methods suffice to improve next-token perplexity as well as downstream in-context learning task performance.
Fine-tuning Reinforcement Learning Models is Secretly a Forgetting Mitigation Problem
Wołczyk, Maciej, Cupiał, Bartłomiej, Ostaszewski, Mateusz, Bortkiewicz, Michał, Zając, Michał, Pascanu, Razvan, Kuciński, Łukasz, Miłoś, Piotr
Fine-tuning is a widespread technique that allows practitioners to transfer pre-trained capabilities, as recently showcased by the successful applications of foundation models. However, fine-tuning reinforcement learning (RL) models remains a challenge. This work conceptualizes one specific cause of poor transfer, accentuated in the RL setting by the interplay between actions and observations: forgetting of pre-trained capabilities. Namely, a model deteriorates on the state subspace of the downstream task not visited in the initial phase of fine-tuning, on which the model behaved well due to pre-training. This way, we lose the anticipated transfer benefits. We identify conditions when this problem occurs, showing that it is common and, in many cases, catastrophic. Through a detailed empirical analysis of the challenging NetHack and Montezuma's Revenge environments, we show that standard knowledge retention techniques mitigate the problem and thus allow us to take full advantage of the pre-trained capabilities. In particular, in NetHack, we achieve a new state-of-the-art for neural models, improving the previous best score from $5$K to over $10$K points in the Human Monk scenario.
Discovering modular solutions that generalize compositionally
Schug, Simon, Kobayashi, Seijin, Akram, Yassir, Wołczyk, Maciej, Proca, Alexandra, von Oswald, Johannes, Pascanu, Razvan, Sacramento, João, Steger, Angelika
Many complex tasks and environments can be decomposed into simpler, independent parts. Discovering such underlying compositional structure has the potential to expedite adaptation and enable compositional generalization. Despite progress, our most powerful systems struggle to compose flexibly. While most of these systems are monolithic, modularity promises to allow capturing the compositional nature of many tasks. However, it is unclear under which circumstances modular systems discover this hidden compositional structure. To shed light on this question, we study a teacher-student setting with a modular teacher where we have full control over the composition of ground truth modules. This allows us to relate the problem of compositional generalization to that of identification of the underlying modules. We show theoretically that identification up to linear transformation purely from demonstrations is possible in hypernetworks without having to learn an exponential number of module combinations. While our theory assumes the infinite data limit, in an extensive empirical study we demonstrate how meta-learning from finite data can discover modular solutions that generalize compositionally in modular but not monolithic architectures. We further show that our insights translate outside the teacher-student setting and demonstrate that in tasks with compositional preferences and tasks with compositional goals hypernetworks can discover modular policies that compositionally generalize.
The Effectiveness of World Models for Continual Reinforcement Learning
Kessler, Samuel, Ostaszewski, Mateusz, Bortkiewicz, Michał, Żarski, Mateusz, Wołczyk, Maciej, Parker-Holder, Jack, Roberts, Stephen J., Miłoś, Piotr
World models power some of the most efficient reinforcement learning algorithms. In this work, we showcase that they can be harnessed for continual learning - a situation when the agent faces changing environments. World models typically employ a replay buffer for training, which can be naturally extended to continual learning. We systematically study how different selective experience replay methods affect performance, forgetting, and transfer. We also provide recommendations regarding various modeling options for using world models. The best set of choices is called Continual-Dreamer, it is task-agnostic and utilizes the world model for continual exploration. Continual-Dreamer is sample efficient and outperforms state-of-the-art task-agnostic continual reinforcement learning methods on Minigrid and Minihack benchmarks.
On the relationship between disentanglement and multi-task learning
Maziarka, Łukasz, Nowak, Aleksandra, Wołczyk, Maciej, Bedychaj, Andrzej
One of the main arguments behind studying disentangled representations is the assumption that they can be easily reused in different tasks. At the same time finding a joint, adaptable representation of data is one of the key challenges in the multi-task learning setting. In this paper, we take a closer look at the relationship between disentanglement and multi-task learning based on hard parameter sharing. We perform a thorough empirical study of the representations obtained by neural networks trained on automatically generated supervised tasks. Using a set of standard metrics we show that disentanglement appears naturally during the process of multi-task neural network training.
Urban Driver: Learning to Drive from Real-world Demonstrations Using Policy Gradients
Scheel, Oliver, Bergamini, Luca, Wołczyk, Maciej, Osiński, Błażej, Ondruska, Peter
In this work we are the first to present an offline policy gradient method for learning imitative policies for complex urban driving from a large corpus of real-world demonstrations. This is achieved by building a differentiable data-driven simulator on top of perception outputs and high-fidelity HD maps of the area. It allows us to synthesize new driving experiences from existing demonstrations using mid-level representations. Using this simulator we then train a policy network in closed-loop employing policy gradients. We train our proposed method on 100 hours of expert demonstrations on urban roads and show that it learns complex driving policies that generalize well and can perform a variety of driving maneuvers. We demonstrate this in simulation as well as deploy our model to self-driving vehicles in the real-world. Our method outperforms previously demonstrated state-of-the-art for urban driving scenarios -- all this without the need for complex state perturbations or collecting additional on-policy data during training. We make code and data publicly available.
Continual World: A Robotic Benchmark For Continual Reinforcement Learning
Wołczyk, Maciej, Zając, Michał, Pascanu, Razvan, Kuciński, Łukasz, Miłoś, Piotr
Continual learning (CL) -- the ability to continuously learn, building on previously acquired knowledge -- is a natural requirement for long-lived autonomous reinforcement learning (RL) agents. While building such agents, one needs to balance opposing desiderata, such as constraints on capacity and compute, the ability to not catastrophically forget, and to exhibit positive transfer on new tasks. Understanding the right trade-off is conceptually and computationally challenging, which we argue has led the community to overly focus on catastrophic forgetting. In response to these issues, we advocate for the need to prioritize forward transfer and propose Continual World, a benchmark consisting of realistic and meaningfully diverse robotic tasks built on top of Meta-World [52] as a testbed. Following an in-depth empirical evaluation of existing CL methods, we pinpoint their limitations and highlight unique algorithmic challenges in the RL setting. Our benchmark aims to provide a meaningful and computationally inexpensive challenge for the community and thus help better understand the performance of existing and future solutions.
Biologically-Inspired Spatial Neural Networks
Wołczyk, Maciej, Tabor, Jacek, Śmieja, Marek, Maszke, Szymon
We introduce bio-inspired artificial neural networks consisting of neurons that are additionally characterized by spatial positions. To simulate properties of biological systems we add the costs penalizing long connections and the proximity of neurons in a two-dimensional space. Our experiments show that in the case where the network performs two different tasks, the neurons naturally split into clusters, where each cluster is responsible for processing a different task. This behavior not only corresponds to the biological systems, but also allows for further insight into interpretability or continual learning.
SeGMA: Semi-Supervised Gaussian Mixture Auto-Encoder
Śmieja, Marek, Wołczyk, Maciej, Tabor, Jacek, Geiger, Bernhard C.
We propose a semi-supervised generative model, SeGMA, which learns a joint probability distribution of data and their classes and which is implemented in a typical Wasserstein auto-encoder framework. We choose a mixture of Gaussians as a target distribution in latent space, which provides a natural splitting of data into clusters. To connect Gaussian components with correct classes, we use a small amount of labeled data and a Gaussian classifier induced by the target distribution. SeGMA is optimized efficiently due to the use of Cramer-Wold distance as a maximum mean discrepancy penalty, which yields a closed-form expression for a mixture of spherical Gaussian components and thus obviates the need of sampling. While SeGMA preserves all properties of its semi-supervised predecessors and achieves at least as good generative performance on standard benchmark data sets, it presents additional features: (a) interpolation between any pair of points in the latent space produces realistically-looking samples; (b) combining the interpolation property with disentangled class and style variables, SeGMA is able to perform a continuous style transfer from one class to another; (c) it is possible to change the intensity of class characteristics in a data point by moving the latent representation of the data point away from specific Gaussian components.