Goto

Collaborating Authors

 Wo, Tianyu


RoCA: Robust Contrastive One-class Time Series Anomaly Detection with Contaminated Data

arXiv.org Artificial Intelligence

The accumulation of time-series signals and the absence of labels make time-series Anomaly Detection (AD) a self-supervised task of deep learning. Methods based on normality assumptions face the following three limitations: (1) A single assumption could hardly characterize the whole normality or lead to some deviation. (2) Some assumptions may go against the principle of AD. (3) Their basic assumption is that the training data is uncontaminated (free of anomalies), which is unrealistic in practice, leading to a decline in robustness. This paper proposes a novel robust approach, RoCA, which is the first to address all of the above three challenges, as far as we are aware. It fuses the separated assumptions of one-class classification and contrastive learning in a single training process to characterize a more complete so-called normality. Additionally, it monitors the training data and computes a carefully designed anomaly score throughout the training process. This score helps identify latent anomalies, which are then used to define the classification boundary, inspired by the concept of outlier exposure. The performance on AIOps datasets improved by 6% compared to when contamination was not considered (COCA). On two large and high-dimensional multivariate datasets, the performance increased by 5% to 10%. RoCA achieves the highest average performance on both univariate and multivariate datasets. The source code is available at https://github.com/ruiking04/RoCA.


Motion Forecasting for Autonomous Vehicles: A Survey

arXiv.org Artificial Intelligence

In recent years, the field of autonomous driving has attracted increasingly significant public interest. Accurately forecasting the future behavior of various traffic participants is essential for the decision-making of Autonomous Vehicles (AVs). In this paper, we focus on both scenario-based and perception-based motion forecasting for AVs. We propose a formal problem formulation for motion forecasting and summarize the main challenges confronting this area of research. We also detail representative datasets and evaluation metrics pertinent to this field. Furthermore, this study classifies recent research into two main categories: supervised learning and self-supervised learning, reflecting the evolving paradigms in both scenario-based and perception-based motion forecasting. In the context of supervised learning, we thoroughly examine and analyze each key element of the methodology. For self-supervised learning, we summarize commonly adopted techniques. The paper concludes and discusses potential research directions, aiming to propel progress in this vital area of AV technology.


RobotDiffuse: Motion Planning for Redundant Manipulator based on Diffusion Model

arXiv.org Artificial Intelligence

Redundant manipulators, with their higher Degrees of Freedom (DOFs), offer enhanced kinematic performance and versatility, making them suitable for applications like manufacturing, surgical robotics, and human-robot collaboration. However, motion planning for these manipulators is challenging due to increased DOFs and complex, dynamic environments. While traditional motion planning algorithms struggle with high-dimensional spaces, deep learning-based methods often face instability and inefficiency in complex tasks. This paper introduces RobotDiffuse, a diffusion model-based approach for motion planning in redundant manipulators. By integrating physical constraints with a point cloud encoder and replacing the U-Net structure with an encoder-only transformer, RobotDiffuse improves the model's ability to capture temporal dependencies and generate smoother, more coherent motion plans. We validate the approach using a complex simulator, and release a new dataset with 35M robot poses and 0.14M obstacle avoidance scenarios. Experimental results demonstrate the effectiveness of RobotDiffuse and the promise of diffusion models for motion planning tasks. The code can be accessed at https://github.com/ACRoboT-buaa/RobotDiffuse.


Deep Contrastive One-Class Time Series Anomaly Detection

arXiv.org Artificial Intelligence

The accumulation of time-series data and the absence of labels make time-series Anomaly Detection (AD) a self-supervised deep learning task. Single-normality-assumption-based methods, which reveal only a certain aspect of the whole normality, are incapable of tasks involved with a large number of anomalies. Specifically, Contrastive Learning (CL) methods distance negative pairs, many of which consist of both normal samples, thus reducing the AD performance. Existing multi-normality-assumption-based methods are usually two-staged, firstly pre-training through certain tasks whose target may differ from AD, limiting their performance. To overcome the shortcomings, a deep Contrastive One-Class Anomaly detection method of time series (COCA) is proposed by authors, following the normality assumptions of CL and one-class classification. It treats the original and reconstructed representations as the positive pair of negative-sample-free CL, namely "sequence contrast". Next, invariance terms and variance terms compose a contrastive one-class loss function in which the loss of the assumptions is optimized by invariance terms simultaneously and the "hypersphere collapse" is prevented by variance terms. In addition, extensive experiments on two real-world time-series datasets show the superior performance of the proposed method achieves state-of-the-art.


Passenger Mobility Prediction via Representation Learning for Dynamic Directed and Weighted Graph

arXiv.org Artificial Intelligence

In recent years, ride-hailing services have been increasingly prevalent as they provide huge convenience for passengers. As a fundamental problem, the timely prediction of passenger demands in different regions is vital for effective traffic flow control and route planning. As both spatial and temporal patterns are indispensable passenger demand prediction, relevant research has evolved from pure time series to graph-structured data for modeling historical passenger demand data, where a snapshot graph is constructed for each time slot by connecting region nodes via different relational edges (e.g., origin-destination relationship, geographical distance, etc.). Consequently, the spatiotemporal passenger demand records naturally carry dynamic patterns in the constructed graphs, where the edges also encode important information about the directions and volume (i.e., weights) of passenger demands between two connected regions. However, existing graph-based solutions fail to simultaneously consider those three crucial aspects of dynamic, directed, and weighted (DDW) graphs, leading to limited expressiveness when learning graph representations for passenger demand prediction. Therefore, we propose a novel spatiotemporal graph attention network, namely Gallat (Graph prediction with all attention) as a solution. In Gallat, by comprehensively incorporating those three intrinsic properties of DDW graphs, we build three attention layers to fully capture the spatiotemporal dependencies among different regions across all historical time slots. Moreover, the model employs a subtask to conduct pretraining so that it can obtain accurate results more quickly. We evaluate the proposed model on real-world datasets, and our experimental results demonstrate that Gallat outperforms the state-of-the-art approaches.