Goto

Collaborating Authors

 Witten, I. H.


Issues in Stacked Generalization

arXiv.org Artificial Intelligence

Stacked generalization is a general method of using a high-level model to combine lower-level models to achieve greater predictive accuracy. In this paper we address two crucial issues which have been considered to be a `black art' in classification tasks ever since the introduction of stacked generalization in 1992 by Wolpert: the type of generalizer that is suitable to derive the higher-level model, and the kind of attributes that should be used as its input. We find that best results are obtained when the higher-level model combines the confidence (and not just the predictions) of the lower-level ones. We demonstrate the effectiveness of stacked generalization for combining three different types of learning algorithms for classification tasks. We also compare the performance of stacked generalization with majority vote and published results of arcing and bagging.


Issues in Stacked Generalization

Journal of Artificial Intelligence Research

Stacked generalization is a general method of using a high-level model to combine lower-level models to achieve greater predictive accuracy. In this paper we address two crucial issues which have been considered to be a `black art' in classification tasks ever since the introduction of stacked generalization in 1992 by Wolpert: the type of generalizer that is suitable to derive the higher-level model, and the kind of attributes that should be used as its input. We find that best results are obtained when the higher-level model combines the confidence (and not just the predictions) of the lower-level ones. We demonstrate the effectiveness of stacked generalization for combining three different types of learning algorithms for classification tasks. We also compare the performance of stacked generalization with majority vote and published results of arcing and bagging.


Identifying Hierarchical Structure in Sequences: A linear-time algorithm

Journal of Artificial Intelligence Research

SEQUITUR is an algorithm that infers a hierarchical structure from a sequence of discrete symbols by replacing repeated phrases with a grammatical rule that generates the phrase, and continuing this process recursively. The result is a hierarchical representation of the original sequence, which offers insights into its lexical structure. The algorithm is driven by two constraints that reduce the size of the grammar, and produce structure as a by-product. SEQUITUR breaks new ground by operating incrementally. Moreover, the method's simple structure permits a proof that it operates in space and time that is linear in the size of the input. Our implementation can process 50,000 symbols per second and has been applied to an extensive range of real world sequences.