Winther, Ole
SurVAE Flows: Surjections to Bridge the Gap between VAEs and Flows
Nielsen, Didrik, Jaini, Priyank, Hoogeboom, Emiel, Winther, Ole, Welling, Max
Normalizing flows and variational autoencoders are powerful generative models that can represent complicated density functions. However, they both impose constraints on the models: Normalizing flows use bijective transformations to model densities whereas VAEs learn stochastic transformations that are non-invertible and thus typically do not provide tractable estimates of the marginal likelihood. In this paper, we introduce SurVAE Flows: A modular framework of composable transformations that encompasses VAEs and normalizing flows. SurVAE Flows bridge the gap between normalizing flows and VAEs with surjective transformations, wherein the transformations are deterministic in one direction -- thereby allowing exact likelihood computation, and stochastic in the reverse direction -- hence providing a lower bound on the corresponding likelihood. We show that several recently proposed methods, including dequantization and augmented normalizing flows, can be expressed as SurVAE Flows. Finally, we introduce common operations such as the max value, the absolute value, sorting and stochastic permutation as composable layers in SurVAE Flows.
On the Transfer of Disentangled Representations in Realistic Settings
Dittadi, Andrea, Träuble, Frederik, Locatello, Francesco, Wüthrich, Manuel, Agrawal, Vaibhav, Winther, Ole, Bauer, Stefan, Schölkopf, Bernhard
Learning meaningful representations that disentangle the underlying structure of the data generating process is considered to be of key importance in machine learning. While disentangled representations were found to be useful for diverse tasks such as abstract reasoning and fair classification, their scalability and real-world impact remain questionable. We introduce a new high-resolution dataset with 1M simulated images and over 1,800 annotated real-world images of the same robotic setup. In contrast to previous work, this new dataset exhibits correlations, a complex underlying structure, and allows to evaluate transfer to unseen simulated and real-world settings where the encoder i) remains in distribution or ii) is out of distribution. We propose new architectures in order to scale disentangled representation learning to realistic high-resolution settings and conduct a large-scale empirical study of disentangled representations on this dataset. We observe that disentanglement is a good predictor for out-of-distribution (OOD) task performance.
Optimal Variance Control of the Score Function Gradient Estimator for Importance Weighted Bounds
Liévin, Valentin, Dittadi, Andrea, Christensen, Anders, Winther, Ole
This paper introduces novel results for the score function gradient estimator of the importance weighted variational bound (IWAE). We prove that in the limit of large $K$ (number of importance samples) one can choose the control variate such that the Signal-to-Noise ratio (SNR) of the estimator grows as $\sqrt{K}$. This is in contrast to the standard pathwise gradient estimator where the SNR decreases as $1/\sqrt{K}$. Based on our theoretical findings we develop a novel control variate that extends on VIMCO. Empirically, for the training of both continuous and discrete generative models, the proposed method yields superior variance reduction, resulting in an SNR for IWAE that increases with $K$ without relying on the reparameterization trick. The novel estimator is competitive with state-of-the-art reparameterization-free gradient estimators such as Reweighted Wake-Sleep (RWS) and the thermodynamic variational objective (TVO) when training generative models.
A Disentangled Recognition and Nonlinear Dynamics Model for Unsupervised Learning
Fraccaro, Marco, Kamronn, Simon, Paquet, Ulrich, Winther, Ole
This paper takes a step towards temporal reasoning in a dynamically changing video, not in the pixel space that constitutes its frames, but in a latent space that describes the non-linear dynamics of the objects in its world. We introduce the Kalman variational auto-encoder, a framework for unsupervised learning of sequential data that disentangles two latent representations: an object's representation, coming from a recognition model, and a latent state describing its dynamics. As a result, the evolution of the world can be imagined and missing data imputed, both without the need to generate high dimensional frames at each time step. The model is trained end-to-end on videos of a variety of simulated physical systems, and outperforms competing methods in generative and missing data imputation tasks. Papers published at the Neural Information Processing Systems Conference.
Bayesian Inference for Structured Spike and Slab Priors
Andersen, Michael R., Winther, Ole, Hansen, Lars K.
Sparse signal recovery addresses the problem of solving underdetermined linear inverse problems subject to a sparsity constraint. We propose a novel prior formulation, the structured spike and slab prior, which allows to incorporate a priori knowledge of the sparsity pattern by imposing a spatial Gaussian process on the spike and slab probabilities. Thus, prior information on the structure of the sparsity pattern can be encoded using generic covariance functions. Furthermore, we provide a Bayesian inference scheme for the proposed model based on the expectation propagation framework. Using numerical experiments on synthetic data, we demonstrate the benefits of the model.
LAVAE: Disentangling Location and Appearance
Dittadi, Andrea, Winther, Ole
A BSTRACT We propose a probabilistic generative model for unsupervised learning of structured, interpretable, object-based representations of visual scenes. We use amortized variational inference to train the generative model end-to-end. The learned representations of object location and appearance are fully disentangled, and objects are represented independently of each other in the latent space. Unlike previous approaches that disentangle location and appearance, ours generalizes seam-lessly to scenes with many more objects than encountered in the training regime. We evaluate the proposed model on multi-MNIST and multidSprites data sets. 1 I NTRODUCTION Many hallmarks of human intelligence rely on the capability to perceive the world as a layout of distinct physical objects that endure through time--a skill that infants acquire in early childhood (Spelke, 1990; 2013; Spelke and Kinzler, 2007). Learning compositional, object-based representations of visual scenes, however, is still regarded as an open challenge for artificial systems (Ben-gio et al., 2013; Garnelo and Shanahan, 2019). Recently, there has been a growing interest in unsupervised learning of disentangled representations (Locatello et al., 2018), which should separate the distinct, informative factors of variations in the data, and contain all the information on the data in a compact, interpretable structure (Bengio et al., 2013). This notion is highly relevant in the context of visual scene representation learning, where distinct objects should arguably be represented in a disentangled fashion.
BIVA: A Very Deep Hierarchy of Latent Variables for Generative Modeling
Maaløe, Lars, Fraccaro, Marco, Liévin, Valentin, Winther, Ole
With the introduction of the variational autoencoder (VAE), probabilistic latent variable models have received renewed attention as powerful generative models. However, their performance in terms of test likelihood and quality of generated samples has been surpassed by autoregressive models without stochastic units. Furthermore, flow-based models have recently been shown to be an attractive alternative that scales well to high-dimensional data. In this paper we close the performance gap by constructing VAE models that can effectively utilize a deep hierarchy of stochastic variables and model complex covariance structures. We introduce the Bidirectional-Inference Variational Autoencoder (BIVA), characterized by a skip-connected generative model and an inference network formed by a bidirectional stochastic inference path. We show that BIVA reaches state-of-the-art test likelihoods, generates sharp and coherent natural images, and uses the hierarchy of latent variables to capture different aspects of the data distribution. We observe that BIVA, in contrast to recent results, can be used for anomaly detection. We attribute this to the hierarchy of latent variables which is able to extract high-level semantic features. Finally, we extend BIVA to semi-supervised classification tasks and show that it performs comparably to state-of-the-art results by generative adversarial networks.
Recurrent Relational Networks
Palm, Rasmus, Paquet, Ulrich, Winther, Ole
This paper is concerned with learning to solve tasks that require a chain of interde- pendent steps of relational inference, like answering complex questions about the relationships between objects, or solving puzzles where the smaller elements of a solution mutually constrain each other. We introduce the recurrent relational net- work, a general purpose module that operates on a graph representation of objects. As a generalization of Santoro et al. [2017]’s relational network, it can augment any neural network model with the capacity to do many-step relational reasoning. We achieve state of the art results on the bAbI textual question-answering dataset with the recurrent relational network, consistently solving 20/20 tasks. As bAbI is not particularly challenging from a relational reasoning point of view, we introduce Pretty-CLEVR, a new diagnostic dataset for relational reasoning. In the Pretty- CLEVR set-up, we can vary the question to control for the number of relational reasoning steps that are required to obtain the answer. Using Pretty-CLEVR, we probe the limitations of multi-layer perceptrons, relational and recurrent relational networks. Finally, we show how recurrent relational networks can learn to solve Sudoku puzzles from supervised training data, a challenging task requiring upwards of 64 steps of relational reasoning. We achieve state-of-the-art results amongst comparable methods by solving 96.6% of the hardest Sudoku puzzles.
Recurrent Relational Networks
Palm, Rasmus, Paquet, Ulrich, Winther, Ole
This paper is concerned with learning to solve tasks that require a chain of interde- pendent steps of relational inference, like answering complex questions about the relationships between objects, or solving puzzles where the smaller elements of a solution mutually constrain each other. We introduce the recurrent relational net- work, a general purpose module that operates on a graph representation of objects. As a generalization of Santoro et al. [2017]’s relational network, it can augment any neural network model with the capacity to do many-step relational reasoning. We achieve state of the art results on the bAbI textual question-answering dataset with the recurrent relational network, consistently solving 20/20 tasks. As bAbI is not particularly challenging from a relational reasoning point of view, we introduce Pretty-CLEVR, a new diagnostic dataset for relational reasoning. In the Pretty- CLEVR set-up, we can vary the question to control for the number of relational reasoning steps that are required to obtain the answer. Using Pretty-CLEVR, we probe the limitations of multi-layer perceptrons, relational and recurrent relational networks. Finally, we show how recurrent relational networks can learn to solve Sudoku puzzles from supervised training data, a challenging task requiring upwards of 64 steps of relational reasoning. We achieve state-of-the-art results amongst comparable methods by solving 96.6% of the hardest Sudoku puzzles.
Recurrent Relational Networks
Palm, Rasmus Berg, Paquet, Ulrich, Winther, Ole
This paper is concerned with learning to solve tasks that require a chain of interdependent steps of relational inference, like answering complex questions about the relationships between objects, or solving puzzles where the smaller elements of a solution mutually constrain each other. We introduce the recurrent relational network, a general purpose module that operates on a graph representation of objects. As a generalization of Santoro et al. [2017]'s relational network, it can augment any neural network model with the capacity to do many-step relational reasoning. We achieve state of the art results on the bAbI textual question-answering dataset with the recurrent relational network, consistently solving 20/20 tasks. As bAbI is not particularly challenging from a relational reasoning point of view, we introduce Pretty-CLEVR, a new diagnostic dataset for relational reasoning. In the Pretty-CLEVR set-up, we can vary the question to control for the number of relational reasoning steps that are required to obtain the answer. Using Pretty-CLEVR, we probe the limitations of multi-layer perceptrons, relational and recurrent relational networks. Finally, we show how recurrent relational networks can learn to solve Sudoku puzzles from supervised training data, a challenging task requiring upwards of 64 steps of relational reasoning. We achieve state-of-the-art results amongst comparable methods by solving 96.6% of the hardest Sudoku puzzles.