Wilson, William
Motif Detection Inspired by Immune Memory
Wilson, William, Birkin, Phil, Aickelin, Uwe
The search for patterns or motifs in data represents an area of key interest to many researchers. In this paper we present the Motif Tracking Algorithm, a novel immune inspired pattern identification tool that is able to identify variable length unknown motifs which repeat within time series data. The algorithm searches from a completely neutral perspective that is independent of the data being analysed and the underlying motifs. In this paper we test the flexibility of the motif tracking algorithm by applying it to the search for patterns in two industrial data sets. The algorithm is able to identify a population of motifs successfully in both cases, and the value of these motifs is discussed.
Price Trackers Inspired by Immune Memory
Wilson, William, Birkin, Phil, Aickelin, Uwe
In this paper we outline initial concepts for an immune inspired algorithm to evaluate price time series data. The proposed solution evolves a short term pool of trackers dynamically through a process of proliferation and mutation, with each member attempting to map to trends in price movements. Successful trackers feed into a long term memory pool that can generalise across repeating trend patterns. Tests are performed to examine the algorithm's ability to successfully identify trends in a small data set. The influence of the long term memory pool is then examined. We find the algorithm is able to identify price trends presented successfully and efficiently.
Modelling Immunological Memory
Garret, Simon, Robbins, Martin, Walker, Joanne, Wilson, William, Aickelin, Uwe
Accurate immunological models offer the possibility of performing highthroughput experiments in silico that can predict, or at least suggest, in vivo phenomena. In this chapter, we compare various models of immunological memory. We first validate an experimental immunological simulator, developed by the authors, by simulating several theories of immunological memory with known results. We then use the same system to evaluate the predicted effects of a theory of immunological memory. The resulting model has not been explored before in artificial immune systems research, and we compare the simulated in silico output with in vivo measurements. Although the theory appears valid, we suggest that there are a common set of reasons why immunological memory models are a useful support tool; not conclusive in themselves.
Cooperative Automated Worm Response and Detection Immune Algorithm
Kim, Jungwon, Wilson, William, Aickelin, Uwe, McLeod, Julie
The role of T-cells within the immune system is to confirm and assess anomalous situations and then either respond to or tolerate the source of the effect. To illustrate how these mechanisms can be harnessed to solve real-world problems, we present the blueprint of a T-cell inspired algorithm for computer security worm detection. We show how the three central T-cell processes, namely T-cell maturation, differentiation and proliferation, naturally map into this domain and further illustrate how such an algorithm fits into a complete immune inspired computer security system and framework.